Wissen, Austausch und Inspiration für Entwickler
Nürnberg, 4.-6. September 2018

Herbstcampus 2018 » Programm »

Machine Learning 101 – Datenanalyse abseits des Hypes

Durch die Digitalisierung, das Internet of Things und die Industrie 4.0 fallen immer größere Datenmengen an. Die Auswertung durch Menschen ist schon lange undenkbar geworden, doch wie können sie sinnvoll genutzt werden, statt im Archiv zu verstauben? Machine Learning beschäftigt sich mit dieser Frage und bietet Möglichkeiten, sich durch den Dschungel zu kämpfen, Muster zu erkennen und Grundlagen für Entscheidungen zu legen.
In unserem Workshop geben wir einen Überblick und erklären, was Machine Learning ist. Dazu vermitteln wir Grundlagenkenntnisse, einen allgemeinen Projekt-Workflow und steigen in einzelne Bereiche tiefer ein, sodass Teilnehmer neue Projekte erfolgreich umsetzen können.

Technische Anforderungen
Alle Informationen, Installationsanleitung und Agenda werden unter https://github.com/data-science-workshops/machine-learning-101 veröffentlicht.

Falls Sie ein Gerät Ihrer Firma verwenden, überprüfen Sie vorher bitte, ob eines der folgenden, gelegentlich vorkommenden Probleme bei Ihnen auftreten könnte:

* Workshop-Teilnehmer hat keine Administrator-Rechte.
* Corporate Laptops mit übermäßig penibler Sicherheitssoftware
* Gesetzte Corporate-Proxies, über die man in der Firma kommunizieren muss, die aber in einer anderen Umgebung entsprechend nicht erreicht werden.

Agenda

ab 8:40: Registrierung und Begrüßungskaffee

9:40: Beginn
11:00-11:15: Kaffeepause

13:00-14:00: Mittagspause

16:00-16:30: Kaffeepause

ca. 18.30 Uhr: Ende

Vorkenntnisse
Für den Workshop sind keine speziellen Vorkenntnisse nötig.

Lernziele
In unserem Workshop werden wir einen Überblick über das Thema Machine Learning und mögliche Einsatzzwecke geben, Grundlagen vermitteln, einen allgemeinen Projekt-Workflow skizzieren und erklären. Um die Theorie praktisch aufzubereiten, werden wir die Themen mit Python Jupyter Notebooks und Daten aus einem realen Beispiel live erklären und visualisieren.

Referenten

Fabian Witt Fabian Witt

hat seinen Master in Data & Knowledge Engineering an der Otto-von-Guericke-Universität Magdeburg gemacht. In dieser Zeit hat er sich speziell mit Themen wie Maschinellem Lernen, Data Mining und Schwarmintelligenz befasst. Bei der Firma Redheads Ltd. ist er als Technical Lead für den Bereich Data Science verantwortlich.


Jonathan Staufer Jonathan Staufer

hat seinen Master in Wirtschaftsinformatik an der Technischen Hochschule Nürnberg absolviert. Im Rahmen seines Studiums hat er sich unter anderem mit den Themen Machine Learning, Big Data und Internationales Softwareengineering befasst. Bei der Firma Redheads Ltd. ist er als Softwareentwickler und Data Scientist Teil des Data-Science-Teams.