
Unkaputtbar

Muster für Resilient Software-Design

Uwe Friedrichsen
codecentric AG

@ufried

Uwe Friedrichsen | uwe.friedrichsen@codecentric.de | http://slideshare.net/ufried | http://ufried.tumblr.com

Resilience? Never heard of it …

re•sil•ience (rɪˈzɪl yəns) also re•sil′ien•cy, n.

1.  the power or ability to return to the original form, position,

etc., after being bent, compressed, or stretched; elasticity.

2.  ability to recover readily from illness, depression, adversity,

or the like; buoyancy.

Random House Kernerman Webster's College Dictionary, © 2010 K Dictionaries Ltd.
Copyright 2005, 1997, 1991 by Random House, Inc. All rights reserved.

http://www.thefreedictionary.com/resilience

What’s all the fuss about?

It‘s all about production!

Business

Production

Availability

Availability ≔
 MTTF

MTTF + MTTR

MTTF: Mean Time To Failure

MTTR: Mean Time To Recovery

How can I maximize availability?

Traditional stability approach

Availability ≔
 MTTF

MTTF + MTTR

Maximize MTTF

reliability

degree to which a system, product or component

performs specified functions

under specified conditions for a specified period of time

ISO/IEC 25010:2011(en)

https://www.iso.org/obp/ui/#iso:std:iso-iec:25010:ed-1:v1:en

Underlying assumption

What’s the problem?

(Almost) every system is a distributed system

Chas Emerick

The Eight Fallacies of Distributed Computing

1. The network is reliable

2. Latency is zero

3. Bandwidth is infinite

4. The network is secure

5. Topology doesn't change

6. There is one administrator

7. Transport cost is zero

8. The network is homogeneous

Peter Deutsch

https://blogs.oracle.com/jag/resource/Fallacies.html

A distributed system is one in which the failure

of a computer you didn't even know existed

can render your own computer unusable.

Leslie Lamport

Failures in todays complex, distributed and
interconnected systems are not the exception.

•  They are the normal case

•  They are not predictable

… and it’s getting “worse”

•  Cloud-based systems

•  Microservices

•  Zero Downtime

•  IoT & Mobile

•  Social

! Ever-increasing complexity and connectivity

Do not try to avoid failures. Embrace them.

Resilience approach

Availability ≔
 MTTF

MTTF + MTTR

Minimize MTTR

resilience (IT)

the ability of a system to handle unexpected situations

-  without the user noticing it (best case)

-  with a graceful degradation of service (worst case)

Designing for resilience

A small pattern language

Isolation

Isolation

•  System must not fail as a whole

•  Split system in parts and isolate parts against each other

•  Avoid cascading failures

•  Requires set of measures to implement

Isolation

Bulkheads

Bulkheads

•  Core isolation pattern

•  a.k.a. “failure units” or “units of mitigation”

•  Used as units of redundancy (and thus, also as units of scalability)

•  Pure design issue

Isolation

Bulkheads

Complete
Parameter
Checking

Complete Parameter Checking

•  As obvious as it sounds, yet often neglected

•  Protection from broken/malicious calls (and return values)

•  Pay attention to Postel’s law

•  Consider specific data types

Complete Parameter Checking

// How to design request parameters

// Worst variant – requires tons of checks
String buySomething(Map<String, String> params);

// Still a bad variant – still a lot of checks required
String buySomething(String customerId, String productId, int count);

// Much better – only null checks required
PurchaseStatus buySomething(Customer buyer, Article product, Quantity count);

Isolation

Bulkheads

Complete
Parameter
Checking

Loose Coupling

Loose Coupling

•  Complements isolation

•  Reduce coupling between failure units

•  Avoid cascading failures

•  Different approaches and patterns available

Isolation

Bulkheads

Loose Coupling

Complete
Parameter
Checking

Asynchronous
Communication

Asynchronous Communication

•  Decouples sender from receiver

•  Sender does not need to wait for receiver’s response

•  Useful to prevent cascading failures due to failing/latent resources

•  Breaks up the call stack paradigm

Isolation

Bulkheads

Loose Coupling

Asynchronous
Communication

Complete
Parameter
Checking

Location

Transparency

Location Transparency

•  Decouples sender from receiver

•  Sender does not need to know receiver’s concrete location

•  Useful to implement redundancy and failover transparently

•  Usually implemented using dispatchers or mappers

Isolation

Bulkheads

Loose Coupling

Asynchronous
Communication
 Location

Transparency

Complete
Parameter
Checking

Event-Driven

Event-Driven

•  Popular asynchronous communication style

•  Without broker location dependency is reversed

•  With broker location transparency is easily achieved

•  Very different from request-response paradigm

Request/response

(Sender depends on receiver)

Lookup

Sender

Receiver

Request/
Response

// from sender
receiver = lookup()

// from sender
result =
 receiver.call()

Event-driven

without broker

(Receiver depends on sender)

// from sender
queue.send(msg)

// from receiver
queue =
 sender.subscribe()
msg = queue.receive()

Subscribe

Sender

Receiver

Send

Receive

Event-driven

with broker

(Sender and receiver decoupled)

// from sender
broker = lookup()
broker.send(msg)

// from receiver
queue =
 broker.subscribe()
msg = queue.receive()

Subscribe

Sender

Receiver

Send

Broker

Receive

Lookup

Isolation

Bulkheads

Loose Coupling

Asynchronous
Communication

Event-Driven

Location

Transparency

Complete
Parameter
Checking
Stateless

Stateless

•  Supports location transparency (amongst other patterns)

•  Service relocation is hard with state

•  Service failover is hard with state

•  Very fundamental resilience and scalability pattern

Isolation

Bulkheads

Loose Coupling

Asynchronous
Communication

Event-Driven

Location

Transparency

Stateless

Complete
Parameter
Checking

Relaxed
Temporal

Constraints

Relaxed Temporal Constraints

•  Strict consistency requires tight coupling of the involved nodes

•  Any single failure immediately compromises availability

•  Use a more relaxed consistency model to reduce coupling

•  The real world is not ACID, it is BASE (at best)!

Isolation

Bulkheads

Loose Coupling

Asynchronous
Communication

Event-Driven

Relaxed
Temporal

Constraints

Location

Transparency

Stateless

Complete
Parameter
Checking

Idempotency

Idempotency

•  Non-idempotency is complicated to handle in distributed systems

•  (Usually) increases coupling between participating parties

•  Use idempotent actions to reduce coupling between nodes

•  Very fundamental resilience and scalability pattern

Unique request token (schematic)

// Client/Sender part

// Create request with unique request token (e.g., via UUID)
token = createUniqueToken()
request = createRequest(token, payload)

// Send request until successful
while (!successful)
 send(request, timeout) // Do not forget failure handling

// Server/Receiver part

// Receive request
request = receive()

// Process request only if token is unknown
if (!lookup(request.token)) // needs to implemented in a CAS way to be safe
 process(request)
 store(token) // Store token for lookup (can be garbage collected eventually)

Isolation

Bulkheads

Loose Coupling

Asynchronous
Communication

Event-Driven

Idempotency

Relaxed
Temporal

Constraints

Location

Transparency

Stateless

Complete
Parameter
Checking

Self-Containment

Self-Containment

•  Services are self-contained deployment units

•  No dependencies to other runtime infrastructure components

•  Reduces coupling at deployment time

•  Improves isolation and flexibility

Use a framework …

Spring Boot

Dropwizard

Jackson

…

Metrics

… or do it yourself

Isolation

Bulkheads

Loose Coupling

Asynchronous
Communication

Event-Driven

Idempotency

Self-Containment
Relaxed
Temporal

Constraints

Location

Transparency

Stateless

Complete
Parameter
Checking

Latency Control

Latency control

•  Complements isolation

•  Detection and handling of non-timely responses

•  Avoid cascading temporal failures

•  Different approaches and patterns available

Isolation

Latency Control

Bulkheads

Loose Coupling

Asynchronous
Communication

Event-Driven

Idempotency

Self-Containment
Relaxed
Temporal

Constraints

Location

Transparency

Stateless

Complete
Parameter
Checking

Timeouts

Timeouts

•  Preserve responsiveness independent of downstream latency

•  Measure response time of downstream calls

•  Stop waiting after a pre-determined timeout

•  Take alternate action if timeout was reached

Timeouts with standard library means

// Wrap blocking action in a Callable
Callable<MyActionResult> myAction = <My Blocking Action>

// Use a simple ExecutorService to run the action in its own thread
ExecutorService executor = Executors.newSingleThreadExecutor();
Future<MyActionResult> future = executor.submit(myAction);
MyActionResult result = null;

// Use Future.get() method to limit time to wait for completion
try {
 result = future.get(TIMEOUT, TIMEUNIT);
 // Action completed in a timely manner – process results
} catch (TimeoutException e) {
 // Handle timeout (e.g., schedule retry, escalate, alternate action, …)
} catch (...) {
 // Handle other exceptions that can be thrown by Future.get()
} finally {
 // Make sure the callable is stopped even in case of a timeout
 future.cancel(true);
}

Isolation

Latency Control

Timeouts

Bulkheads

Loose Coupling

Asynchronous
Communication

Event-Driven

Idempotency

Self-Containment
Relaxed
Temporal

Constraints

Location

Transparency

Stateless

Complete
Parameter
Checking

Circuit Breaker

Circuit Breaker

•  Probably most often cited resilience pattern

•  Extension of the timeout pattern

•  Takes downstream unit offline if calls fail multiple times

•  Specific variant of the fail fast pattern

// Hystrix “Hello world”

public class HelloCommand extends HystrixCommand<String> {
 private static final String COMMAND_GROUP = ”Hello”; // Not important here
 private final String name;

 // Request parameters are passed in as constructor parameters
 public HelloCommand(String name) {
 super(HystrixCommandGroupKey.Factory.asKey(COMMAND_GROUP));
 this.name = name;
 }

 @Override
 protected String run() throws Exception {
 // Usually here would be the resource call that needs to be guarded
 return "Hello, " + name;
 }
}

// Usage of a Hystrix command – synchronous variant
@Test
public void shouldGreetWorld() {
 String result = new HelloCommand("World").execute();
 assertEquals("Hello, World", result);
}

Source: https://github.com/Netflix/Hystrix/wiki/How-it-Works

Isolation

Latency Control

Circuit Breaker

Timeouts

Bulkheads

Loose Coupling

Asynchronous
Communication

Event-Driven

Idempotency

Self-Containment
Relaxed
Temporal

Constraints

Location

Transparency

Stateless

Complete
Parameter
Checking

Fail Fast

Fail Fast

•  “If you know you’re going to fail, you better fail fast”

•  Avoid foreseeable failures

•  Usually implemented by adding checks in front of costly actions

•  Enhances probability of not failing

Isolation

Latency Control

Fail Fast

Circuit Breaker

Timeouts

Bulkheads

Loose Coupling

Asynchronous
Communication

Event-Driven

Idempotency

Self-Containment
Relaxed
Temporal

Constraints

Location

Transparency

Stateless

Complete
Parameter
Checking

Fan out &
quickest reply

Fan out & quickest reply

•  Send request to multiple workers

•  Use quickest reply and discard all other responses

•  Reduces probability of latent responses

•  Tradeoff is “waste” of resources

Isolation

Latency Control

Fail Fast

Circuit Breaker

Timeouts

Bulkheads

Loose Coupling

Asynchronous
Communication

Event-Driven

Idempotency

Self-Containment
Relaxed
Temporal

Constraints

Location

Transparency

Stateless

Complete
Parameter
Checking

Bounded Queues

Fan out &
quickest reply

Bounded Queues

•  Limit request queue sizes in front of highly utilized resources

•  Avoids latency due to overloaded resources

•  Introduces pushback on the callers

•  Another variant of the fail fast pattern

Bounded Queue Example

// Executor service runs with up to 6 worker threads simultaneously
// When thread pool is exhausted, up to 4 tasks will be queued -
// additional tasks are rejected triggering the PushbackHandler
final int POOL_SIZE = 6;
final int QUEUE_SIZE = 4;

// Set up a thread pool executor with a bounded queue and a PushbackHandler
ExecutorService executor =
 new ThreadPoolExecutor(POOL_SIZE, POOL_SIZE, // Core pool size, max pool size
 0, TimeUnit.SECONDS, // Timeout for unused threads
 new ArrayBlockingQueue(QUEUE_SIZE),
 new PushbackHandler);

// PushbackHandler - implements the desired pushback behavior
public class PushbackHandler implements RejectedExecutionHandler {
 @Override
 public void rejectedExecution(Runnable r, ThreadPoolExecutor executor) {
 // Implement your pushback behavior here
 }
}

Isolation

Latency Control

Fail Fast

Circuit Breaker

Timeouts

Fan out &
quickest reply

Bounded Queues

Bulkheads

Loose Coupling

Asynchronous
Communication

Event-Driven

Idempotency

Self-Containment
Relaxed
Temporal

Constraints

Location

Transparency

Stateless

Complete
Parameter
Checking

Shed Load

Shed Load

•  Upstream isolation pattern

•  Avoid becoming overloaded due to too many requests

•  Install a gatekeeper in front of the resource

•  Shed requests based on resource load

Isolation

Latency Control

Fail Fast

Circuit Breaker

Timeouts

Fan out &
quickest reply

Bounded Queues

Shed Load

Bulkheads

Loose Coupling

Asynchronous
Communication

Event-Driven

Idempotency

Self-Containment
Relaxed
Temporal

Constraints

Location

Transparency

Stateless

Complete
Parameter
Checking

Supervision

Supervision

•  Provides failure handling beyond the means of a single failure unit

•  Detect unit failures

•  Provide means for error escalation

•  Different approaches and patterns available

Isolation

Latency Control

Fail Fast

Circuit Breaker

Timeouts

Fan out &
quickest reply

Bounded Queues

Shed Load

Bulkheads

Loose Coupling

Asynchronous
Communication

Event-Driven

Idempotency

Self-Containment
Relaxed
Temporal

Constraints

Location

Transparency

Stateless

Supervision

Complete
Parameter
Checking
 Monitor

Monitor

•  Observe unit behavior and interactions from the outside

•  Automatically respond to detected failures

•  Part of the system – complex failure handling strategies possible

•  Outside the system – more robust against system level failures

Isolation

Latency Control

Fail Fast

Circuit Breaker

Timeouts

Fan out &
quickest reply

Bounded Queues

Shed Load

Bulkheads

Loose Coupling

Asynchronous
Communication

Event-Driven

Idempotency

Self-Containment
Relaxed
Temporal

Constraints

Location

Transparency

Stateless

Supervision

Monitor

Complete
Parameter
Checking

Error Handler

Error Handler

•  Units often don’t have enough time or information to handle errors

•  Separate business logic and error handling

•  Business logic just focuses on getting the task done (quickly)

•  Error handler has sufficient time and information to handle errors

Isolation

Latency Control

Fail Fast

Circuit Breaker

Timeouts

Fan out &
quickest reply

Bounded Queues

Shed Load

Bulkheads

Loose Coupling

Asynchronous
Communication

Event-Driven

Idempotency

Self-Containment
Relaxed
Temporal

Constraints

Location

Transparency

Stateless

Supervision

Monitor

Error Handler

Complete
Parameter
Checking

Escalation

Escalation

•  Units often don’t have enough time or information to handle errors

•  Escalation peer with more time and information needed

•  Often multi-level hierarchies

•  Pure design issue

Escalation implementation
using Worker/Supervisor

W

Flow / Process

W
 W
W
 W
 W
 W
W

S
 S
 S

S

S

Escalation

Isolation

Latency Control

Fail Fast

Circuit Breaker

Timeouts

Fan out &
quickest reply

Bounded Queues

Shed Load

Bulkheads

Loose Coupling

Asynchronous
Communication

Event-Driven

Idempotency

Self-Containment
Relaxed
Temporal

Constraints

Location

Transparency

Stateless

Supervision

Monitor

Complete
Parameter
Checking

Error Handler

Escalation

… and there is more

•  Recovery & mitigation patterns

•  More supervision patterns

•  Architectural patterns

•  Anti-fragility patterns

•  Fault treatment & prevention patterns

A rich pattern family

Wrap-up

•  Today’s systems are distributed ...

•  … and it’s getting “worse”

•  Failures are the normal case

•  Failures are not predictable

•  Resilient software design needed

•  Rich pattern language

•  Isolation is a good starting point

Do not avoid failures. Embrace them!

@ufried

Uwe Friedrichsen | uwe.friedrichsen@codecentric.de | http://slideshare.net/ufried | http://ufried.tumblr.com

