
Ich habe fertig!

Production-ready statt Feature-complete

Uwe Friedrichsen
codecentric AG

@ufried

Uwe Friedrichsen | uwe.friedrichsen@codecentric.de | http://slideshare.net/ufried | http://ufried.tumblr.com

Why this talk?

Ops
Dev

Business
 IT value chain
 Customer

feature complete

production ready

Work in progress

Realized

business

value

New

business

idea

It‘s all about production!

But before we talk about production …

… let’s talk about DevOps briefly

What is that DevOps thing anyway?

Let’s check the

“DevOps bible”

http://itrevolution.com/books/phoenix-project-devops-book/

DevOps in a nutshell

The 3 ways of DevOps

Systems thinking

Amplify feedback loops

Culture of continual experimentation & learning

http://itrevolution.com/the-three-ways-principles-underpinning-devops/

•  Maximize flow (minimize cycle times)

•  Optimize for global goals (holistic view)

•  Never pass defects downstream

•  Limit work in progress

•  Build systems and organizations that are safe to change

Ops
Dev

Business
 IT value chain
 Customer

Holistic optimization

Systems thinking

•  Facilitate constant flow of fast feedback from right-to-left

•  Create quality at source (provide knowledge where needed)

•  Create shared goals and shared pain between Dev and Ops

•  Implement fast automated test suites

•  Pervasively measure outcome (customer value), not output

Ops
Dev

Business
 IT value chain
 Customer

Amplify feedback loops

•  Create a culture that fosters two things

•  Continual experimentation, taking risks and learning from success and failure

•  Understanding that repetition and practice is the prerequisite to mastery

•  Allocate at least 20% of Dev and Ops cycles to NFRs

•  Constantly reinforce that improvements are encouraged & celebrated

Ops
Dev

Business
 IT value chain
 Customer

Continual experimentation and learning

If taken seriously DevOps will eventually
rotate your IT organization by 90°

Ops
Dev
 IT value chain

Bu
sin

es
s

ca
pa

bi
lit

ie
s

Sp
ec

ia
lis

t t
ea

m
 (e

.g
.,

pr
od

uc
t m

an
ag

er
)

Sp
ec

ia
lis

t t
ea

m
 (e

.g
.,

UX
 e

xp
er

t)

Sp
ec

ia
lis

t t
ea

m
 (e

.g
.,

de
ve

lo
pe

r)

Sp
ec

ia
lis

t t
ea

m
 (e

.g
.,

Q
A

ex
pe

rt
)

Sp
ec

ia
lis

t t
ea

m
 (e

.g
.,

sy
s

ad
m

in
)

Sp
ec

ia
lis

t t
ea

m
 (e

.g
.,

D
BA

)

…

Traditional IT organization

Ops
Dev
 IT value chain

Bu
sin

es
s

ca
pa

bi
lit

ie
s

Cross-functional product team

…

DevOps IT organization

Cross-functional product team

Cross-functional product team

Cross-functional product team

Ops
Dev
 IT value chain

Bu
sin

es
s

ca
pa

bi
lit

ie
s

Cross-functional product team

…

DevOps IT organization (optimized)

Cross-functional product team

Cross-functional product team

Cross-functional product team

Pl
at

fo
rm

 te
am

AP
I

But that’s still a long way to go 
for many organizations …

Amplify feedback loops

•  Facilitate constant flow of fast feedback from right-to-left

•  Create quality at source (provide knowledge where needed)

•  Create shared goals and shared pain between Dev and Ops

•  Implement fast automated test suites

•  Pervasively measure outcome (customer value), not output

Ops
Dev

Business
 IT value chain
 Customer

Thus, we’ll focus on this feedback loop

Let’s talk about operations …

Operations

Developers Point of View

Admin

Developers Point of View

Admin

Closer to Reality Point of View

Top 5 Needs of an Admin

1.  Give me my peace and quiet!

2.  Don‘t make me think!

3.  Let me see that everything is fine!

4.  Show me the problem – now!

5.  Tell me what to do!

Top 5 Needs of an Admin (translated)

1.  Give me my peace and quiet!  

(The application should just run smoothly)

2.  Don‘t make me think!  
(Rollout, setup and operation of the application should be easy)

3.  Let me see that everything is fine!  
(The application should show its state)

4.  Show me the problem – now!  
(The application should provide concise error messages and enable easy root cause drilldown)

5.  Tell me what to do!  
(The application should be documented properly – including error handling instructions)

Top 3 Dev Challenges

1.  Manageability

2.  Resilience

3.  Transparency

4.  Documentation

11 Design Principles

For production-ready Applications

•  Manageability (4)

•  Resilience (5)

•  Transparency (2)

Manageability

Deployment

(Manageability)

•  One-click deployment

•  Preserve settings

•  Provide rollbacks or roll-forward

•  Go for containers

Configuration

(Manageability)

•  Avoid multiple configuration procedures

•  Define default value handling

•  Organize change traceability

•  Notification about new parameters

Configuration Parameter Types

(Manageability)

•  Context-related parameters  
Do not stage – managed by stage admin

•  Application-related parameters  
Must be staged – managed by application admin

•  Business-related parameters 
Must be staged – managed by business admin

Backup

(Manageability)

•  Think about backup purpose

•  Define backup strategy

•  Provide tooling

•  What about cloud backup?

Resilience

Isolation

•  System must not fail as a whole

•  Divide system in failure units (a.k.a. bulkheads)

•  Avoid error propagation by isolating failure units

•  Define fallback strategy

Redundancy

•  Elaborate use case 
Minimize MTTR / avoid latency / handle response errors / …

•  Define routing & distribution strategy  
Round robin / master-slave / fan-out & quickest one wins / …

•  Consider admin involvement 
Automatic vs. manual / notification – monitoring / …

Loose Coupling

•  Isolate failure units (complements bulkheads)

•  Go asynchronous wherever possible

•  Use timeouts & circuit breakers

•  Make actions idempotent

Implementation Example #1

Timeouts

Timeouts (1)

// Basics
myObject.wait(); // Do not use this by default
myObject.wait(TIMEOUT); // Better use this

// Some more basics
myThread.join(); // Do not use this by default
myThread.join(TIMEOUT); // Better use this

Timeouts (2)

// Using the Java concurrent library
Callable<MyActionResult> myAction = <My Blocking Action>

ExecutorService executor = Executors.newSingleThreadExecutor();
Future<MyActionResult> future = executor.submit(myAction);
MyActionResult result = null;

try {
 result = future.get(); // Do not use this by default
 result = future.get(TIMEOUT, TIMEUNIT); // Better use this
} catch (TimeoutException e) { // Only thrown if timeouts are used
 ...
} catch (...) {
 ...
}

Timeouts (3)

// Using Guava SimpleTimeLimiter
Callable<MyActionResult> myAction = <My Blocking Action>

SimpleTimeLimiter limiter = new SimpleTimeLimiter();
MyActionResult result = null;

try {
 result =
 limiter.callWithTimeout(myAction, TIMEOUT, TIMEUNIT, false);
} catch (UncheckedTimeoutException e) {
 ...
} catch (...) {
 ...
}

Implementation Example #2

Circuit Breaker

Circuit Breaker – concept

Client
 Resource
Circuit Breaker

Request

Resource unavailable

Resource available

Closed
 Open

Half-Open

Lifecycle

Implemented patterns

•  Timeout

•  Circuit breaker

•  Load shedder

•  Fallback

Supported patterns

•  Bulkheads 

(a.k.a. Failure Units)

•  Fail fast

•  Fail silently

•  Graceful degradation of service

•  Failover

•  Escalation

•  Retry

•  ...

Hello, world!

// Hystrix “Hello world”

public class HelloCommand extends HystrixCommand<String> {
 private static final String COMMAND_GROUP = ”Hello”; // Not important here
 private final String name;

 // Request parameters are passed in as constructor parameters
 public HelloCommand(String name) {
 super(HystrixCommandGroupKey.Factory.asKey(COMMAND_GROUP));
 this.name = name;
 }

 @Override
 protected String run() throws Exception {
 // Usually here would be the resource call that needs to be guarded
 return "Hello, " + name;
 }
}

// Usage of a Hystrix command – synchronous variant
@Test
public void shouldGreetWorld() {
 String result = new HelloCommand("World").execute();
 assertEquals("Hello, World", result);
}

Source: https://github.com/Netflix/Hystrix/wiki/How-it-Works

Fallbacks

•  What will you do if a request fails?

•  Consider failure handling from the very beginning

•  Supplement with general failure handling strategies

Scalability

•  Define scaling strategy

•  Think full stack

•  Design for elasticity

•  At least apply D-I-D rule

Transparency

Monitoring

(Transparency)

•  Think about required metrics

•  Design hook or event mechanism

•  Plan for changing metrics

•  Consider event sourcing

Logging

(Transparency)

•  Consider log message structure 
Assume centralized logging: required information / machine readable / human readable

•  Define logging policy  
Debug and less: developers perspective / Info and more: operations perspective

11 Design Principles

•  Manageability

•  Deployment

•  Configuration

•  Configuration Parameter Types

•  Backup

•  Resilience

•  Isolation

•  Redundancy

•  Loose Coupling

•  Fallbacks

•  Scalability

•  Transparency

•  Monitoring

•  Logging

Don’t forget to 
read the “bible” of
production-ready
software …

https://pragprog.com/book/mnee/release-it

Wrap-up

•  The importance of “production readiness”

•  The 3 ways of DevOps

•  The needs of Ops

•  The resulting challenges for Dev

•  Design principles to support the needs

•  Manageability

•  Resilience

•  Transparency

It’s all about production!

@ufried

Uwe Friedrichsen | uwe.friedrichsen@codecentric.de | http://slideshare.net/ufried | http://ufried.tumblr.com

