
Ich habe fertig! 

Production-ready statt Feature-complete 

Uwe Friedrichsen 
codecentric AG 



@ufried
Uwe Friedrichsen | uwe.friedrichsen@codecentric.de | http://slideshare.net/ufried | http://ufried.tumblr.com



Why this talk? 



Ops Dev
Business IT value chain  Customer 

feature complete

production ready 

Work in progress 
Realized 
business 

value 

New
business 

idea 



It‘s all about production!



But before we talk about production …



… let’s talk about DevOps briefly 



What is that DevOps thing anyway? 



Let’s check the


“DevOps bible”



http://itrevolution.com/books/phoenix-project-devops-book/ 



DevOps in a nutshell 



The 3 ways of DevOps 


Systems thinking 

Amplify feedback loops 

Culture of continual experimentation & learning 



http://itrevolution.com/the-three-ways-principles-underpinning-devops/ 



•  Maximize flow (minimize cycle times) 

•  Optimize for global goals (holistic view) 

•  Never pass defects downstream

•  Limit work in progress 

•  Build systems and organizations that are safe to change

Ops Dev
Business IT value chain  Customer 

Holistic optimization 

Systems thinking 



•  Facilitate constant flow of fast feedback from right-to-left

•  Create quality at source (provide knowledge where needed) 

•  Create shared goals and shared pain between Dev and Ops

•  Implement fast automated test suites 

•  Pervasively measure outcome (customer value), not output

Ops Dev
Business IT value chain  Customer 

Amplify feedback loops 



•  Create a culture that fosters two things 
•  Continual experimentation, taking risks and learning from success and failure

•  Understanding that repetition and practice is the prerequisite to mastery 

•  Allocate at least 20% of Dev and Ops cycles to NFRs 

•  Constantly reinforce that improvements are encouraged & celebrated 

Ops Dev
Business IT value chain  Customer 

Continual experimentation and learning 



If taken seriously DevOps will eventually 
rotate your IT organization by 90° 



Ops Dev IT value chain 

Bu
sin

es
s 

ca
pa

bi
lit

ie
s

Sp
ec

ia
lis

t t
ea

m
 (e

.g
., 

pr
od

uc
t m

an
ag

er
)

Sp
ec

ia
lis

t t
ea

m
 (e

.g
., 

UX
 e

xp
er

t)

Sp
ec

ia
lis

t t
ea

m
 (e

.g
., 

de
ve

lo
pe

r)

Sp
ec

ia
lis

t t
ea

m
 (e

.g
., 

Q
A 

ex
pe

rt
)

Sp
ec

ia
lis

t t
ea

m
 (e

.g
., 

sy
s 

ad
m

in
)

Sp
ec

ia
lis

t t
ea

m
 (e

.g
., 

D
BA

)

…

Traditional IT organization 



Ops Dev IT value chain 

Bu
sin

es
s 

ca
pa

bi
lit

ie
s

Cross-functional product team

…


DevOps IT organization 

Cross-functional product team

Cross-functional product team

Cross-functional product team



Ops Dev IT value chain 

Bu
sin

es
s 

ca
pa

bi
lit

ie
s

Cross-functional product team

…


DevOps IT organization (optimized) 

Cross-functional product team

Cross-functional product team

Cross-functional product team

Pl
at

fo
rm

 te
am



AP
I



But that’s still a long way to go 
for many organizations …



Amplify feedback loops 









•  Facilitate constant flow of fast feedback from right-to-left

•  Create quality at source (provide knowledge where needed) 

•  Create shared goals and shared pain between Dev and Ops

•  Implement fast automated test suites 

•  Pervasively measure outcome (customer value), not output

Ops Dev
Business IT value chain  Customer 

Thus, we’ll focus on this feedback loop 



Let’s talk about operations …



Operations 
Developers Point of View



Admin
Developers Point of View



Admin
Closer to Reality Point of View



Top 5 Needs of an Admin 


1.  Give me my peace and quiet! 

2.  Don‘t make me think! 

3.  Let me see that everything is fine! 

4.  Show me the problem – now! 

5.  Tell me what to do! 



Top 5 Needs of an Admin (translated) 

1.  Give me my peace and quiet!  

(The application should just run smoothly) 

2.  Don‘t make me think!  
(Rollout, setup and operation of the application should be easy) 

3.  Let me see that everything is fine!  
(The application should show its state) 

4.  Show me the problem – now!  
(The application should provide concise error messages and enable easy root cause drilldown) 

5.  Tell me what to do!  
(The application should be documented properly – including error handling instructions) 



Top 3 Dev Challenges 


1.  Manageability 

2.  Resilience 

3.  Transparency 

4.  Documentation 



11 Design Principles 


For production-ready Applications 








•  Manageability (4) 

•  Resilience (5) 

•  Transparency (2) 



Manageability 



Deployment


(Manageability) 



•  One-click deployment

•  Preserve settings

•  Provide rollbacks or roll-forward 

•  Go for containers 



Configuration 


(Manageability) 



•  Avoid multiple configuration procedures 

•  Define default value handling

•  Organize change traceability 

•  Notification about new parameters 



Configuration Parameter Types 


(Manageability) 



•  Context-related parameters  
Do not stage – managed by stage admin 

•  Application-related parameters  
Must be staged – managed by application admin

•  Business-related parameters 
Must be staged – managed by business admin



Backup


(Manageability) 



•  Think about backup purpose

•  Define backup strategy

•  Provide tooling 

•  What about cloud backup? 



Resilience 



Isolation 



•  System must not fail as a whole

•  Divide system in failure units (a.k.a. bulkheads)

•  Avoid error propagation by isolating failure units 

•  Define fallback strategy



Redundancy 



•  Elaborate use case 
Minimize MTTR / avoid latency / handle response errors / …

•  Define routing & distribution strategy  
Round robin / master-slave / fan-out & quickest one wins / …

•  Consider admin involvement 
Automatic vs. manual / notification – monitoring / …



Loose Coupling 



•  Isolate failure units (complements bulkheads) 

•  Go asynchronous wherever possible

•  Use timeouts & circuit breakers 

•  Make actions idempotent



Implementation Example #1 


Timeouts 



Timeouts (1) 
// Basics 
myObject.wait();  // Do not use this by default 
myObject.wait(TIMEOUT);  // Better use this 
 
// Some more basics 
myThread.join();  // Do not use this by default 
myThread.join(TIMEOUT);  // Better use this 



Timeouts (2) 
// Using the Java concurrent library 
Callable<MyActionResult> myAction = <My Blocking Action> 
 
ExecutorService executor = Executors.newSingleThreadExecutor(); 
Future<MyActionResult> future = executor.submit(myAction); 
MyActionResult result = null; 
 
try { 
    result = future.get();  // Do not use this by default 
    result = future.get(TIMEOUT, TIMEUNIT);  // Better use this 
} catch (TimeoutException e) {  // Only thrown if timeouts are used 
    ... 
} catch (...) { 
    ... 
} 



Timeouts (3) 
// Using Guava SimpleTimeLimiter 
Callable<MyActionResult> myAction = <My Blocking Action> 
 
SimpleTimeLimiter limiter = new SimpleTimeLimiter(); 
MyActionResult result = null; 
 
try { 
    result = 
        limiter.callWithTimeout(myAction, TIMEOUT, TIMEUNIT, false); 
} catch (UncheckedTimeoutException e) { 
    ... 
} catch (...) { 
    ... 
} 



Implementation Example #2 


Circuit Breaker 



Circuit Breaker – concept

Client  ResourceCircuit Breaker 

Request 

Resource unavailable

Resource available

Closed  Open 

Half-Open

Lifecycle





Implemented patterns







•  Timeout

•  Circuit breaker 

•  Load shedder 

•  Fallback



Supported patterns 

•  Bulkheads 

(a.k.a. Failure Units) 

•  Fail fast

•  Fail silently

•  Graceful degradation of service

•  Failover 

•  Escalation 

•  Retry 

•  ... 



Hello, world! 



// Hystrix “Hello world” 
 
public class HelloCommand extends HystrixCommand<String> { 
    private static final String COMMAND_GROUP = ”Hello”; // Not important here 
    private final String name; 
 
    // Request parameters are passed in as constructor parameters 
    public HelloCommand(String name) { 
        super(HystrixCommandGroupKey.Factory.asKey(COMMAND_GROUP)); 
        this.name = name; 
    } 
 
    @Override 
    protected String run() throws Exception { 
        // Usually here would be the resource call that needs to be guarded 
        return "Hello, " + name; 
    } 
} 
 
 
// Usage of a Hystrix command – synchronous variant 
@Test 
public void shouldGreetWorld() { 
    String result = new HelloCommand("World").execute(); 
    assertEquals("Hello, World", result); 
} 



Source: https://github.com/Netflix/Hystrix/wiki/How-it-Works 



Fallbacks 



•  What will you do if a request fails? 

•  Consider failure handling from the very beginning 

•  Supplement with general failure handling strategies 



Scalability 



•  Define scaling strategy

•  Think full stack 

•  Design for elasticity 

•  At least apply D-I-D rule



Transparency 



Monitoring 


(Transparency)



•  Think about required metrics 

•  Design hook or event mechanism

•  Plan for changing metrics 

•  Consider event sourcing 



Logging 


(Transparency)



•  Consider log message structure 
Assume centralized logging: required information / machine readable / human readable

•  Define logging policy  
Debug and less: developers perspective / Info and more: operations perspective



11 Design Principles 

•  Manageability 

•  Deployment
•  Configuration 
•  Configuration Parameter Types 
•  Backup



•  Resilience 
•  Isolation 
•  Redundancy 
•  Loose Coupling 
•  Fallbacks 
•  Scalability 



•  Transparency 
•  Monitoring 
•  Logging 



Don’t forget to 
read the “bible” of 
production-ready 
software …



https://pragprog.com/book/mnee/release-it 



Wrap-up 


•  The importance of “production readiness”

•  The 3 ways of DevOps 

•  The needs of Ops 

•  The resulting challenges for Dev 

•  Design principles to support the needs 

•  Manageability 
•  Resilience 
•  Transparency 



It’s all about production! 



@ufried
Uwe Friedrichsen | uwe.friedrichsen@codecentric.de | http://slideshare.net/ufried | http://ufried.tumblr.com






