< it Herbstcampus

Ich habe fertig!

Production-ready statt Feature-complete

Uwe Friedrichsen

codecentric AG

Jfriec

Uwe Friedrichsen | uwe friedrichsen@codecentric.de | http://slideshare.net/ufried | http://ufried.tumblr.com

Why this talk?

| production ready |

F——— feature complete ——

) Dev . Ops

Realized
business & Work in progress el business
idea value

New

[t's all ab

But before we talk about production ...

.. let’s talk about DevOps briefly

What is that DevOps thing anyway?

Let's check the
"DevOps bible”

http://itrevolution.com/books/phoenix-project-devops-book/

Phoenix
Project

A Novel About IT, DevOps,
and Helping Your Business Win

Gene Kim, Kevin Behr, and George Spafford

DevOps N a nutshell

T »m, -

-
L,
- TP

The 3 ways of DevOps

Systems thinking
Amplify feedback loops

Culture of continual experimentation & learning

http://itrevolution.com/the-three-ways-principles-underpinning-devops/

Systems thinking

< >
g

) Dev . Ops

« Maximize flow (minimize cycle times)

« Optimize for global goals (holistic view)
» Never pass defects downstream
 Limit work in progress

 Build systems and organizations that are safe to change

Amplity feedback loops

Business IT value chain

« Facilitate constant flow of fast feedback from right-to-left

« Create quality at source (provide knowledge where needed)
» Create shared goals and shared pain between Dev and Ops
« Implement fast automated test suites

* Pervasively measure outcome (customer value), not output

Continual experimentation and learning

CXXXXXX

) Dev . Ops

 (reate a culture that fosters two things
« Continual experimentation, taking risks and learning from success and failure

« Understanding that repetition and practice is the prerequisite to mastery
 Allocate at least 20% of Dev and Ops cycles to NFRs

« (Constantly reinforce that improvements are encouraged & celebrated

It taken seriously DevOps will eventually
rotate your IT organization by 90°

Traditional IT organization

A

Business capabilities

IT value chain

Business capabilities

DevOps IT organization

Dev IT value chain Ops

DevOps IT organization (optimized)

A

Business capabilities
API

Dev IT value chain Ops

But that's still a long way to go
for many organizations ...

Thus, we'll focus on this feedback loop

Let’s talk about operations ...

Qperations

Developers Point of View

P

--vmiﬂlﬂul‘}'\}v» '

Developers Point of View

NS
T oo A
- . -

4 _ -
N Rl Ay
. a)
. .)
.v“ $ - "

Admin

Closer to Reality Point of View

Top 5 Needs of an Admin

1. Give me my peace and quiet!

2. Don't make me think!

3. Let me see that everything is fine!
4. Show me the problem — now!

5. Tell me what to do!

Top 5 Needs of an Admin (translated)

1. Give me my peace and quiet!

(The application should just run smoothly)

2. Don't make me think!

(Rollout, setup and operation of the application should be easy)

3. Let me see that everything is fine!

(The application should show its state)

4. Show me the problem — now!

(The application should provide concise error messages and enable easy root cause drilldown)

5. Tell me what to do!

(The application should be documented properly — including error handling instructions)

Top 3 Dev Challenges

1. Manageability

2. Resilience

3. Transparency

11 Design Principles

For production-ready Applications

» Manageability (4) = r
* Resilience (5) | /

* Transparency (2)

Manageability

Deployment

(Manageability)

One-click deployment
Preserve settings
Provide rollbacks or roll-forward

Go for containers

Configuration

(Manageability)

Avoid multiple configuration procedures

Define default value handling
Organize change traceability

Notification about new parameters

Configuration Parameter Types

(Manageability)

Context-related parameters

Do not stage — managed by stage admin

Application-related parameters

Must be staged — managed by application admin

Business-related parameters

Must be staged — managed by business admin

busnetathfen:

Backup

(Manageability)

Y By
UM L L

e
7
'y "’1 J
LEEEE AR R P)
o T
AASSISITAIII NS SIS NI D,
S S

e s S

l‘,’”,"_I.‘ 1]

lgau frasrenann

IS SIS S0 d 30 2T

BTR A o A
§f- '

« Think about backup purpose
 Define backup strategy
 Provide tooling

What about cloud backup?

m m i FRTS S SR TN

Resilience
A

[solation

System must not fail as a whole

Divide system in failure units (a.k.a. bulkheads)

Avoid error propagation by isolating failure units

Define fallback strategy

»)) H
DUKE OF
D LANCAS

Ny TER

——

Redundancy

e Elaborate use case

Minimize MTTR / avoid latency / handle response errors / ...

 Define routing & distribution strategy

Round robin / master-slave / fan-out & quickest one wins / ...

e Consider admin involvement

Automatic vs. manual / notification — monitoring / ...

Loose Coupling

[solate failure units (complements bulkheads)

GO asynchronous wherever possible

Use timeouts & circuit breakers

Make actions idempotent

Implementation Example #1

Timeouts

Timeouts (1)

// Basics
myObject.wait (); // Do not use this by default

myObject.wait (TIMEOUT); // Better use this

// Some more basics
myThread.join(); // Do not use this by default
myThread.join (TIMEOUT); // Better use this

Timeouts (2)

// Using the Java concurrent library
Callable<MyActionResult> myAction = <My Blocking Action>

ExecutorService executor = Executors.newSingleThreadExecutor ()
Future<MyActionResult> future = executor.submit (myAction);
MyActionResult result = null;

try {
result = future.get(); // Do not use this by default
result = future.get (TIMEOUT, TIMEUNIT); // Better use this

} catch (TimeoutException e) { // Only thrown if timeouts are used

} catch (...) {

Timeouts (3)

// Using Guava SimpleTimelLimiter
Callable<MyActionResult> myAction = <My Blocking Action>

SimpleTimelLimiter limiter = new SimpleTimeLimiter () ;
MyActionResult result = null;

try A
result =

limiter.callWithTimeout (myAction, TIMEOUT, TIMEUNIT, false);
} catch (UncheckedTimeoutException e) {

} catch (...) {

Implementation Example #2

Circuit Breaker

Circuit Breaker — concept

Request

v

._._.Z] l] v

LT
[REEEERRRRRENEN

[
»

Resource available

Pl
<

f———
| BEERERRRAAAAE

Resource unavailable

Client Circuit Breaker Resource

Half-Open

Lifecycle

GitHub This repository ~ | Search or type a command ® Explore Features Enterprise Blog gnup Sign in

Netflix / Hystrix % Star 1580 s Fork 219

Home Pages History

<>
Home Page History Clone URL
O
= Home 1‘1
= Getting Started

HYSTRIX .. .

= Synchronous Execution
DEFEND YOUR APP

Asynchronous Execution J
= Reactive Execution
= Fallback is

= Error Propagation

= Command Name

= Command Group

= Command Thread Pool
N iv? = Request Cache

What Is HVStrlx " = Request Collapsing

= Request Context Setup

In a distributed environment, failure of any given service is inevitable. Hystrix is a library = Common Patterns

designed to control the interactions between these distributed services providing greater latency oL Lo

and fault tolerance. Hystrix does this by isolating points of access between the services, = How It Works
stopping cascading failures across them, and providing fallback options, all of which improve the = Execution Flow
system's overall resiliency. = Circuit Breaker

= [solation
Hystrix evolved out of resilience engineering work that the Netflix APl team began in 2011. Over = Request Collapsing

. . . . = R Cachi
the course of 2012, Hystrix continued to evolve and mature, eventually leading to adoption b S

Implemented patterns

Timeout
e Circuit breaker
* Load shedder
« Fallback

Supported patterns

Bulkheads
(a.k.a. Failure Units)
 Fail fast

« Fail silently

« Graceful degradation of service
« Failover

« Escalation

* Retry

Hello, world!

// Hystrix “Hello world”

public class HelloCommand extends HystrixCommand<String> {
private static final String COMMAND GROUP = ”Hello”; // Not important here
private final String name;

// Request parameters are passed in as constructor parameters
public HelloCommand (String name) ({

super (HystrixCommandGroupKey.Factory.asKey (COMMAND GROUP)) ;

this.name = name;
}
@Override
protected String run() throws Exception {
// Usually here would be the resource call that needs to be guarded
return "Hello, " + name;
}
}
// Usage of a Hystrix command - synchronous variant
@Test
public void shouldGreetWorld() {
String result = new HelloCommand ("World") .execute();

assertEquals ("Hello, World", result);

Synchronous —»

2]

.execute()

1

Construct

HystrixCommand Asynchronous

.queue()

<+— Exception Thrown

<¢—— Return Fallback Response

<«4—— Exception Thrown

Circuit
Open?

Thread
pool/queue
full?

Not Implemented

uccessful Fallback

>

Short-circuit

Reject

Yes
return immediately

Calculate Circuit
Health

No
Exception Thrown

Failed Fallback

(=]

Return Successful Response

Yes
Got Response

Ea

Report
Metrics

Source: https://github.com/Netflix/Hystrix/wiki/How-it-Works

Fallbacks

Notruf

wenn Alarm
betatiat

« What will you do if a request fails?

 Consider failure handling from the very beginning

« Supplement with general failure handling strategies

Scalability

Define scaling strategy

Think full stack

Design for elasticity

At least apply D-I-D rule

Monitoring

(Transparency)

Think about required metrics
Design hook or event mechanism
Plan for changing metrics

Consider event sourcing

Logging

(Transparency)

« (Consider log message structure

Assume centralized logging: required information / machine readable / human readable

 Define logging policy

Debug and less: developers perspective / Info and more: operations perspective

11 Design Principles

« Manageability
* Deployment
« Configuration

« Configuration Parameter Types
« Backup

e Resilience

 Isolation

« Redundancy

* Loose Coupling
» Fallbacks

« Scalability

* TIransparency
* Monitoring
* Logging

The

i ogrammers

Release It!

Design and Deploy
Don't forget to Production-Ready Software

read the “bible” of
oroduction-ready
software ...

Michael T. Nygard

https://pragprog.com/book/mnee/release-it

Wrap-up

* The importance of “production readiness”

« The 3 ways of DevOps

* The needs of Ops

 The resulting challenges for Dev

« Design principles to support the needs

« Manageability
+ Resilience
* Transparency

[t's all about production!

- “‘1' l“‘:'l o
e W\)
N, A ~
AR\ e i
— R i\
") ;" :

e

Jfriec

Uwe Friedrichsen | uwe friedrichsen@codecentric.de | http://slideshare.net/ufried | http://ufried.tumblr.com

