
Avatar
Erweiterung der Java EE Plattform für JavaScript Fans

Peter Doschkinow
ORACLE Deutschland B.V. & Co. KG

The following is intended to outline our general product direction. It is intended

for information purposes only, and may not be incorporated into any contract.

It is not a commitment to deliver any material, code, or functionality, and should

not be relied upon in making purchasing decisions. The development, release,

and timing of any features or functionality described for Oracle’s products

remains at the sole discretion of Oracle.

 Web Application Architecture

 JavaScript and Node.js on the JVM

 Project Avatar – Advanced JavaScript Services

 Summary

Agenda

Evolution of Web Application Architecture
A Java EE Perspective

Server Client

P
re

s
e

n
ta

tio
n

S
e

rv
le

t / J
S

P

E
n

te
rp

ris
e
 C

o
n

n
e

c
tiv

ity

a
n

d
 B

u
s
in

e
s
s
 L

o
g

ic

Java EE / JVM

 Request / Response

 Multi-Page Application

Browser

HTTP

Evolution of Web Application Architecture
A Java EE Perspective

Server Client

C
o

n
n

e
c
tiv

ity

R
E

S
T

E
n

te
rp

ris
e
 C

o
n

n
e

c
tiv

ity

a
n

d
 B

u
s
in

e
s
s
 L

o
g

ic

Java EE / JVM

 Multi-Page Application

 In-page updates (AJAX)

Browser

HTTP

P
re

s
e

n
ta

tio
n

S
e

rv
le

t / J
S

P

J
S

F

JavaScript

Modern Web Application Architecture
A Java EE Perspective

Server Client

C
o

n
n

e
c
tiv

ity

R
E

S
T

/S
S

E

W
e

b
S

o
c
k
e
t

E
n

te
rp

ris
e
 C

o
n

n
e

c
tiv

ity

a
n

d
 B

u
s
in

e
s
s
 L

o
g

ic

Java EE / JVM

 Single-Page Application

 View/Controller in browser

 Model on client and/or server

REST/SSE/WebSocket

Browser

JavaScript

C
o

n
tro

lle
r

V
ie

w

The Rise of JavaScript

http://redmonk.com/sogrady/2014/06/13/language-rankings-6-14/

Java EE 7 – The Latest in Enterprise Java

DEVELOPER

PRODUCTIVITY
MEETING

ENTERPRISE

DEMANDS

Java EE 7

 Batch

 Concurrency

 Simplified JMS

 More annotated POJOs

 Less boilerplate code

 Cohesive integrated

platform

 WebSockets

 JSON

 Servlet 3.1 NIO

 REST

Node.js

 Platform built on Chrome’s JavaScript runtime V8 for easily building

fast, scalable network applications (Ryan Dahl , 2009)

– perfect for DIRTy(Data Intensive Real-Time) apps

 Uses event-driven non-blocking I/O model

– The async programming model is harder to develop to, but it allows

scalability and high levels of concurrency

 Melting pot community

– Java, .NET, Browser, PHP, etc …

– Very successful, second-most-watched project on GitHub with 80,000+

modules

http://www.nodejs.org

Node.js Programming Model

 Single threaded Event-loop

– Callback model

– Non-blocking I/O calls

– Heavily parallelized

 Multi-threading is hard

– Thousands of concurrent

connections

– Deal with deadlocks and

race conditions

 Blocking on I/O is bad

Minimal Web Server Example :

Node.js Event Loop

Single-Threaded

Event Loop

Resource-

Intensive

Operations

Network

File System

Network

Compute

Client

Requests

(Http)

http://bijoor.me/2013/06/09/java-ee-threads-vs-node-js-which-is-better-for-concurrent-data-processing-operations/

Ressource Utilization: sync vs. async I/O

 Node.js, Vert.x are based on an async programming model

 Java EE introduces many new async API

- Servlet, EJB, JAX-RS, Concurrency for Java EE, ...

Evolution of Web Application Architecture
Mobile-enabling existing services

N
o

d
e

.js

 Project-based end-to-end JavaScript

 Rapid prototyping & API layer

 Leverage backend resources

- Aggregate & transform content

- Return JSON to browser

REST/SSE/WebSocket

Browser

JavaScript

C
o

n
tro

lle
r

V
ie

w

C
o
n
n
e
c
tiv

ity

R
E

S
T

/S
S

E

W
e
b
S

o
c
k
e
t

E
n
te

rp
ris

e
 C

o
n
n
e
c
tiv

ity

a
n
d
 B

u
s
in

e
s
s
 L

o
g
ic

Java EE / JVM Server Client

Evolution of Web Application Architecture
Mobile-enabling existing services

What if we could run Node.js

alongside Java EE in

the same JVM?

C
o

n
n

e
c
tiv

ity

N
o
d
e
.js

E
n

te
rp

ris
e
 C

o
n

n
e

c
tiv

ity

a
n

d
 B

u
s
in

e
s
s
 L

o
g

ic

Java EE / JVM

REST/SSE/WebSocket

Browser

JavaScript

C
o

n
tro

lle
r

V
ie

w

Server Client

 ECMAScript 5.1 compliant

 Bundled with JDK 8

– Replaces Rhino

in earlier JVMs

– Faster (2x – 10x)

 New command-line tool jjs to run JavaScript

 Seamless Java JavaScript interoperability

JavaScript on the JVM

Project Nashorn

http://download.java.net/jdk8/docs/technotes/guides/scripting/nashorn/index.html

Avatar.js

 Platform for server side JavaScript applications

 Requires Nashorn (JDK 8)

 95% Node.js compatibility

– Use popular packages (Express, async, commander, etc)

– Uses same portability libraries as Node.js

 Java bindings for libuv and http-parser

– Limitation: No Chrome v8 native APIs

 Avatar.js Advantages

– Leverage JVM, Java frameworks and libraries, Security manager

Node.js on the JVM

Avatar.js = Node.js + Java

 Node.js Programming Model

– Code in JavaScript

– Single event loop / thread

– Require (import) Node modules

 Invoke Java code

– Java types and libraries

– new java.lang.Thread();

– new com.mydom.MyObj()

Leverage Java, including Threads

Java

JavaScript

java.lang.Thread

java.util.SortedSet

java.math.BigInteger

Node App

JVM Process

com.mydom.MyObj

require (‘express’)

Pictures web app with Node.js and Avatar.js

Demo

 Node.js compatible open-source framework by RedHat

– compatibility achieved by implementing process.binding(C/C++

dependencies in newer Node.js code) in Java

 Components

– DynJS: JavaScript runtime (for now slower than Nashorn)

– Netty: asynchronous event-driven network application framework

– Vert.x

 No distribution available yet

 Similar to avatar.js

http://nodyn.io

Nodyn

 Similar in spirit to Servlets, but focused on REST, WebSocket, Server

Sent Event (SSE) endpoints

 Use familiar Node.js event-driven programming model and modules

 Layers on Avatar.js NodeJS-compatible runtime

 Adds integrated enterprise features

A Server Side JavaScript Services Framework

Project Avatar – the Backend

Avatar Architecture - Server
Server side

Server Database

Data

Notification

JDK 8 / Nashorn

Avatar Runtime

Node Modules

Avatar Modules

Server Runtime (Java EE)

Application

Services

= Java framework

= JavaScript framework

= Application code

Avatar.js

Project Avatar – Backend Features

 Out-of-the-box support for REST, WebSocket, SSE communications

 Multi-threading, lightweight message passing, shared state

 HTTP listener / load-balancer is managed by framework (unlike Node)

 Model Store – Object Relational Mapping

 DataProvider API

– Simple key-value based collection abstraction

– FileDataProvider, JPADataProvider, NoSqlDataProvider

 Messaging integration with JMS on Java EE container

– Through configuration of SSE- and WebSocket communication types

Leveraging the JVM and Java EE in the Node.js programming model

WebSocket Service Example

// Load avatar module

var avatar = require(‘org/glassfish/avatar’);

// Register service instance

avatar.registerSocketService(

 {url: ‘websocket/chat’},

 function() {

 this.data = {transcript : ‘’};

 this.onMessage = function (peer, message) {

 this.data.transcript += message;

 this.data.transcript += ‘\n’;

 peer.getContext().sendAll(this.data);

 };

 });

With JMS integration

WebSocket Service Example

// Load avatar module

var avatar = require(‘org/glassfish/avatar’);

// Register service instance

avatar.registerSocketService({

 url: "/websockets/jmschat/{chatroom}",

 jms: {

 connectionFactoryName: "jms/AvatarConnectionFactory",

 destinationName: "jms/AvatarTopic",

 messageSelector: "chatroom='#{this.chatroom}'",

 messageProperties: {

 chatroom: "#{this.chatroom}"

 }

 }

},

function() { this.onMessage(peer, message) { … }};

Avatar Services Scalability
Multi-core, state sharing, data storage

Java

JVM Process

HTTP Load Balancer

JavaScript
Services Services Services Services

shared state

Database

Data

Notification

JSON JSON JSON JSON

Shared State

 Two Models

– MessageBus

 Publish/subscribe message passing

– Shared State

 Simple map API

 Application-scoped instance

 Session-scoped instance

– Named

– Leased, with configurable timeout

 Provide required serialization, concurrency, and caching

Lightweight inter-thread communication

State Sharing Example

var avatar = require(‘org/glassfish/avatar’);

var threads = require(‘org/glassfish/avatar/threads’);

var appname = avatar.application.name;

var bus = avatar.application.bus;

// Listen for messages on the ‘hello’ topic

bus.on(‘echo’, function(msg) {

 print(appname + ‘ got ‘ + msg);

});

// Start a background thread which publishes to the ‘echo’ topic

new threads.Thread(‘background’, ‘monitor.js’).start();

// or publish to the same topic in this thread

setTimeout(function() bus.publish('echo', { x : 'x', y : 'y' }), 3000);

Model-Store Framework

 JavaScript ORM library

– Many oportunities to leverage JPA features

 Pure JavaScript API that

– Supports relational and non-relational databases

– Integration with other Avatar services

 Similar to pure Node.js libraries

– Sequelize, JugglingDB, Mongoose

Model-Store API
Model and Database setup

 var Product = avatar.newModel({

 "name": {

 type: "string",

 primary: true

 },

 "price": "number",

 "quantity": "integer"

 });

 var store = avatar.newStore(‘mysql’, {

 host: ‘localhost’,

 port: 3306,

 database: ‘test’,

 username: ‘root’,

 password: ‘gu3ssIt’

 createDb: true,

 dropTables: true

 });

Model-Store Example
Creating and Storing an Object

 // Binds Product model with store
 Product.bind(store);

 // Insert a new product into the db
 store.connect(function() {
 Product.create({
 name: 'Widget',
 price: 1.00,
 quantity: 2
 }, function(err, w1) {
 console.log(JSON.stringify(w1));
 store.disconnect(function() {
 // done
 });
 });
});

 Bind model to data store

 Connect to store

– Creates Product table if required

– Callback adds product to table

Model-Store API

 Models can have relationships with other models

– 1:1, 1:n, M,N

 Data Stores

– Relational

 Tested: Oracle DB, MySQL, Derby (Embedded, Network)

 Non-tested: Any other JDBC driver

– Non-relational

 Oracle NoSQL, MongoDB (in progress)

 Client implementation in AngularJS

 Server implemented with Java EE 7, then ported to use Avatar services

 Focus on the server side

 Demonstrate usage of Avatar Services

– built-in support for REST/WebSocket/SSE communication patterns

– Shared state

– Message bus

 Running on GlassFish 4.x or WebLogic 12.1.3

Porting of a HTML5 Applicaton to Avatar

Demo

 Collaborative drawing

 Two-page application

– List of drawings

– Drawing

 Demonstrating

– Server-side: JAX-RS, JSON, WebSocket, SSE Java API

– Client-side: JAX-RS, WebSocket, SSE Java and JavaScript API

– JavaFX hybrid Java/HTML5 application

http://github.com/doschkinow/hol-sse-websocket/solutions/exercise5

Drawing Board HTML5 Demo

Thin Server Architecture

Drawing Board HTML5 Demo

HTTP/S

Web

Sockets

SSE

Clients

J
A

X
-R

S
/S

S
E

J
e

rs
e
y

Data Service

GlassFish 4.0

JSON

JSON

DataProvider

POJO
(Map with Drawings)

W
S

E
n

d
p

o
in

t

HTML5 Browser

JavaFX

WebView/WebKit

webSocketSend.send(...)

send(...) onEvent(...)

DrawingService.query(...)

 JAX-RS: CRUD for drawings

 SSE: distributing the list of drawings to all connected clients

 WebSocket: distributing the updates of a drawing to all connected

clients

 JSON: implementing of encoder/decoder of the WebSocket server

endpoint

 Java – JavaScript bridge(WebEngine): modifying the AngularJS client

by replacing the WebSocket/SSE JavaScript client communication with

a Java implementation in the JavaFX client

Technology usage

Drawing Board HTML5 Demo

Using Avatar Services (http://github.com/doschkinow/hol-sse-websocket/solutions/exercise7)

Drawing Board HTML5 Demo

HTTP/S

Web

Sockets

SSE

Clients
Java EE Server

JSON

JSON

A
v
a

ta
r

C
o
m

m
.
S

e
rv

ic
e
s

In
te

rn
a
l

L
o

a
d

 B
a

la
n

c
e

r

HTML5 Browser

JavaFX

WebView/WebKit

webSocketSend.send(...)

send(...) onEvent(...)

DrawingService.query(...) A
v
a

ta
r

M
e

s
s
a

g
e

 B
u

s

JavaScript
Execution
Context
(Thread)

A
v
a

ta
r

C
o
m

m
.
S

e
rv

ic
e
s

JavaScript
Execution
Context
(Thread)

A
v
a

ta
r

S
h

a
re

d
 S

ta
te

Avatar Roadmap

WebLogic Runtime

2014 2015 2013

Project Avatar launch

JavaOne, 2013

GlassFish 4 Runtime

WebLogic 12.1.4

Avatar

Commercial Support

 Internal project

– Seeking to deliver a very lightweight

implementation

 Zip-distribution, based on Grizzly as protocol

engine

– Includes JPA and JavaDB

 Running the Avatar examples application

– java -jar lib/avatar-se.jar start avatar-se-1.0-

ea/Project-Avatar-examples/hangman

Lightweight implementation on Java SE

Avatar-SE

 Why did you start Avatar.js and Avatar

– To exploit new JVM capabilities and Nashorn

– Synergy effects when running Java EE and Node.js apps on same JVM

 Who is your target group

– Node.js developers wishing to access existing Java apps/libs or to take

advantage of a rich Java appserver infrastructure

– Java/JVM-based language developers wishing to use/integrate Node.js

modules or Node.js single threaded non-blocking programming model

– Java/JavaEE platform provider wishing to extend their offerings

http://blog.n-k.de/2014/07/avatarjs-project-avatar-feedback-from.html?m=1

Java Community Questions on Avatar 1/2

 Do you plan to invest more in Avatar

– we are evaluating different scenarios and are going to invest in Avatar

 What about (more) documentation and more promotion

– more to come at JavaOne 2014

 Why are there no real developing activites/commits since end of March

– https://java.net/projects/avatar/sources/git/history? reveals a last

modification on June 19 (but indeed a minor one)

– We often evaluate/develop our products in closed source first

http://blog.n-k.de/2014/07/avatarjs-project-avatar-feedback-from.html?m=1

Java Community Questions on Avatar 2/2

https://java.net/projects/avatar/sources/git/history

Summary

 Invoke Java code

 Multi-threading and optimizations for better scalability

– Share state across threads, JVMs

– Built-in load balancing across threads

 Leverage Java EE services

 Deploy on existing Java EE infrastructure

– Leverage appserver features (clustering, lifecycle management)

Server Side JavaScript on the JVM

Vielen Dank!

Peter Doschkinow
ORACLE Deutschland B.V. & Co. KG

