
Moderne Zeiten
Architekturen für eine Next Generation IT

Uwe Friedrichsen
codecentric AG

@ufried

Uwe Friedrichsen | uwe.friedrichsen@codecentric.de | http://slideshare.net/ufried | http://ufried.tumblr.com

Why do we need a “Next Generation IT”?

Economic Darwinism

Economic Darwinism

Everyone is affected by Economic Darwinism

•  All sectors

•  Growing globalization on all levels

•  Internet business

•  More competitors per customer

•  Higher customer expectations

•  Lower customer loyalty

à In the long run only those will survive who
meet the customer needs and demands best

Nice, but how does this relate to IT?

IT is the nervous system

IT is vital

•  All companies

•  IT is not just supporter or „cost center “ …

•  … but it is the central nervous system

•  Even short IT outages considered critical

•  No business change without IT

•  No new products without IT

à IT limits the maximum possible 
 adaption rate of a company

IT is a key success factor for belonging to
the survivors of the economic darwinism

What business needs from IT …

How IT serves business …

Economic
Darwinism

Business-related

Change Drivers

IT

Technology-related

Change Drivers

But there is more …

Lean Enterprise

Product 
shaping/optimization

Innovation

Measure & analyze
 Accelerating
OODA loop

Quick customer
feedback cycles

Economic
Darwinism

Business-related

Change Drivers

Lean
Enterprise

IT

Technology-related

Change Drivers

IT as a Product

Virtualization
of products

IT-centric
business models

Disruptive new
business models

Economic
Darwinism

Business-related

Change Drivers

Lean
Enterprise

IT as a Product

IT

Technology-related

Change Drivers

Pay-per-Use

Business Case

Self-Service

Cloud

Elasticity

Unreliable 
COTS Hardware

Provisioning
Speed

Economic
Darwinism

Business-related

Change Drivers

Lean
Enterprise

IT as a Product

Cloud

IT

Technology-related

Change Drivers

Zero Downtime

Peer
Multiplication

Mobile & IoT

Deep Process
Integration

Unreliable 
Communication
Unpredictable

Load Patterns

Economic
Darwinism

Business-related

Change Drivers

Lean
Enterprise

IT as a Product

Cloud

IoT

Mobile

IT

Technology-related

Change Drivers

… and more

Big Data
Analysis

Amplifiers

Social

Economic
Darwinism

Business-related

Change Drivers

Lean
Enterprise

IT as a Product

Cloud

IoT

Mobile

IT

Big Data
Analytics
 Social

Technology-related

Change Drivers

Why does traditional IT usually fail  
to respond to those challenges?

Traditional IT bases its optimization efforts  
on the wrong goals and principles

Traditional IT goals/principles

•  Fault avoidance at any cost 

a.k.a. “the root of all evil”

•  Tayloristic organization

•  Local optimization

•  Process frenzy

•  Central control

•  Long-running projects

•  Standardization

•  Cost minimization

à Not suitable to respond to new challenges

Then, what are the new goals?

Economic
Darwinism

Business-related

Change Drivers

Lean
Enterprise

IT as a Product

Cloud

IoT

Mobile

IT

Big Data
Analytics
 Social

Technology-related

Change Drivers

Short cycle times

Continuous output

High flexibility

High reliability

Equally
Valued
Goals

Holistic consideration

Goals of a Next Generation (of) IT

And what are the new principles?

Principles of a Next Generation (of) IT

The Core Principles

Maximizing innovation instead of minimizing costs

Controlled experiments instead of fault avoidance at any cost

Decentralized, self dependent teams instead of central control and goal sheets

Flexible adaption instead of static planning

Accepting complexity on all levels

Based on Jeff Sussna's 21st Century IT Manifesto (http://blog.ingineering.it/post/39385342347/21st-century-it-manifesto)

Refined in collaboration with Eberhard Wolff

Principles of a Next Generation (of) IT

The Technical Principles

Diversity & lightweight tools instead of monoculture & integrated solutions

Resilience instead of stability

(µ)Services instead of monoliths

Elasticity instead of upfront capacity planning

Consistent automation of routine tasks

Based on Jeff Sussna's 21st Century IT Manifesto (http://blog.ingineering.it/post/39385342347/21st-century-it-manifesto)

Refined in collaboration with Eberhard Wolff

Nice (again), but how does this  
relate to architecture?

Goals & Principles
 Architecture

drives

supports

What does that mean for architecture?

Architectural drivers

•  Need for quick change and extension

•  Replace over reuse

•  Need for quick releases

•  Unpredictable load patterns

•  Distributed, highly interconnected systems

•  Extreme high service availability

•  Diverse front-ends and devices

•  Cost efficiency

Architectural requirements

•  Easy to understand

•  Easy to extend

•  Easy to change

•  Easy to replace

•  Easy to deploy

•  Easy to scale

•  Easy to recover

•  Easy to connect

•  Easy to afford

Architectural requirements

•  Easy to understand
à Understandability

•  Easy to extend
à Extensibility

•  Easy to change
à Changeability

•  Easy to replace
à Replaceability

•  Easy to deploy
à Deployability

•  Easy to scale
à Scalability

•  Easy to recover
à Resilience

•  Easy to connect
à Uniform interface

•  Easy to afford
à Cost-efficiency  

(for development & operations)

What are the appropriate solutions?

Let’s check a few hype topics …

µServices

•  Built for replacement (not reuse)

•  Self-dependent, loosely coupled services

•  Should be aligned with business capability

•  Size should not exceed what one brain can grasp

µServices

Co
st-

ef
fic

ie
nc

y

Un
ifo

rm
 In

te
rfa

ce

Re
sil

ie
nc

e

Sc
al

ab
ilit

y

D
ep

lo
ya

bi
lit

y

Re
pl

ac
ea

bi
lit

y

Ch
an

ge
ab

ilit
y

Ex
te

ns
ib

ilit
y

Un
de

rs
ta

nd
ab

ilit
y

REST

•  Uniform access interface to resources

•  Closely related to the HTTP protocol

•  HATEOAS (Hypermedia as the engine of application state)

REST

Co
st-

ef
fic

ie
nc

y

Un
ifo

rm
 In

te
rfa

ce

Re
sil

ie
nc

e

Sc
al

ab
ilit

y

D
ep

lo
ya

bi
lit

y

Re
pl

ac
ea

bi
lit

y

Ch
an

ge
ab

ilit
y

Ex
te

ns
ib

ilit
y

Un
de

rs
ta

nd
ab

ilit
y

Event-driven

•  Asynchronous communication paradigm

•  Technical decoupling of communication peers (isolation)

•  Location transparency in conjunction with MOM

•  Call-stack paradigm replaced by (complex) message networks

Event-driven

Co
st-

ef
fic

ie
nc

y

Un
ifo

rm
 In

te
rfa

ce

Re
sil

ie
nc

e

Sc
al

ab
ilit

y

D
ep

lo
ya

bi
lit

y

Re
pl

ac
ea

bi
lit

y

Ch
an

ge
ab

ilit
y

Ex
te

ns
ib

ilit
y

Un
de

rs
ta

nd
ab

ilit
y

CQRS

•  Command Query Responsibility Segregation

•  Separate read and write interfaces including underlying models

•  Separation can be extended up to the data store(s)

•  Allows for optimized data representations and access logic

READ

WRITE

CQRS

Co
st-

ef
fic

ie
nc

y

Un
ifo

rm
 In

te
rfa

ce

Re
sil

ie
nc

e

Sc
al

ab
ilit

y

D
ep

lo
ya

bi
lit

y

Re
pl

ac
ea

bi
lit

y

Ch
an

ge
ab

ilit
y

Ex
te

ns
ib

ilit
y

Un
de

rs
ta

nd
ab

ilit
y

READ

WRITE

Reactive

•  Event-driven – asynchronous and non-blocking

•  Scalable – scaling out and embracing the network

•  Resilient – isolation, loose coupling and hierarchical structure

•  Responsive – latency control and graceful degradation of service

Reactive

Co
st-

ef
fic

ie
nc

y

Un
ifo

rm
 In

te
rfa

ce

Re
sil

ie
nc

e

Sc
al

ab
ilit

y

D
ep

lo
ya

bi
lit

y

Re
pl

ac
ea

bi
lit

y

Ch
an

ge
ab

ilit
y

Ex
te

ns
ib

ilit
y

Un
de

rs
ta

nd
ab

ilit
y

Functional Programming

•  Alternative programming paradigm

•  Functional languages (Erlang, Haskell, Clojure, …)

•  Hybrid languages (Scala, …)

•  Languages with functional extensions (Python, JavaScript, Java, …)

Functional Programming

Co
st-

ef
fic

ie
nc

y

Un
ifo

rm
 In

te
rfa

ce

Re
sil

ie
nc

e

Sc
al

ab
ilit

y

D
ep

lo
ya

bi
lit

y

Re
pl

ac
ea

bi
lit

y

Ch
an

ge
ab

ilit
y

Ex
te

ns
ib

ilit
y

Un
de

rs
ta

nd
ab

ilit
y

NoSQL

•  Augments the data store solution space

•  Different sweet spots than RDBMS

•  Key-Value Store – Wide Column Store – Document Store

•  Graph Database

NoSQL

Co
st-

ef
fic

ie
nc

y

Un
ifo

rm
 In

te
rfa

ce

Re
sil

ie
nc

e

Sc
al

ab
ilit

y

D
ep

lo
ya

bi
lit

y

Re
pl

ac
ea

bi
lit

y

Ch
an

ge
ab

ilit
y

Ex
te

ns
ib

ilit
y

Un
de

rs
ta

nd
ab

ilit
y

Continuous Delivery

•  Automate the software delivery chain

•  Build – Continuous Integration, …

•  Test – Test Automation, …

•  Deploy – Infrastructure as Code, …

Continuous Delivery

Co
st-

ef
fic

ie
nc

y

Un
ifo

rm
 In

te
rfa

ce

Re
sil

ie
nc

e

Sc
al

ab
ilit

y

D
ep

lo
ya

bi
lit

y

Re
pl

ac
ea

bi
lit

y

Ch
an

ge
ab

ilit
y

Ex
te

ns
ib

ilit
y

Un
de

rs
ta

nd
ab

ilit
y

Cloud provisioning model

•  On-demand provisioning and de-provisioning

•  Instant availability

•  Self-service

•  Pay-per-use

Cloud provisioning model

Co
st-

ef
fic

ie
nc

y

Un
ifo

rm
 In

te
rfa

ce

Re
sil

ie
nc

e

Sc
al

ab
ilit

y

D
ep

lo
ya

bi
lit

y

Re
pl

ac
ea

bi
lit

y

Ch
an

ge
ab

ilit
y

Ex
te

ns
ib

ilit
y

Un
de

rs
ta

nd
ab

ilit
y

Docker

•  Build, ship, run on container-basis

•  Process-level isolation

•  Declarative communication path configuration

•  Cambrian explosion of ecosystem at the moment

Docker

Co
st-

ef
fic

ie
nc

y

Un
ifo

rm
 In

te
rfa

ce

Re
sil

ie
nc

e

Sc
al

ab
ilit

y

D
ep

lo
ya

bi
lit

y

Re
pl

ac
ea

bi
lit

y

Ch
an

ge
ab

ilit
y

Ex
te

ns
ib

ilit
y

Un
de

rs
ta

nd
ab

ilit
y

… and there are many more

What can we learn from this?

Findings

•  There is not a simple solution and no “one size fits all”

•  Some of the topics evaluated have a high potential

•  Some of the topics evaluated do not help so much

•  A combination of several approaches is needed

How would an architectural style look like?

µServices

•  Conway’s law

•  Built for replacement

•  Aligned with business capabilities

•  Bounded Context (Domain-Driven Design)

•  Separate UI and service

Bounded Context
 Bounded Context
Bounded Context

µS

µS

µS

µS

µS

µS

µS

µS

µS

µS

µS

µS

µS

µS

µS

UI

e.g., B2C-Portal

UI

e.g., embedded in
Partner-Portal

UI

e.g., Mobile App

UI

e.g., Clerk Desktop

REST interfaces

•  Use as API gateway for client access

•  Encapsulate dynamics and complexity of service landscape

•  Provide client-driven, coarse-grained service calls  

behind a uniform API based on a proven protocol

•  Should be provided on bounded context level

•  Decouple speed of evolvement (services vs. API)

Bounded Context

µS

µS
µS

µS

µS

REST API Gateway

µS

Bounded Context
 Other Client

User Interface

Bounded Context

Message-based API

also okay,  
but requires clear and
stable, client-oriented

contract

Event-driven communication

•  Use for inter-service communication

•  Decoupling and isolation

•  Vertical slicing of functionality

•  Easier evolution of flows and processes

•  Configuration-visualization-monitoring support required

µS

Request/Response : Horizontal slicing

Flow / Process

µS
 µS

µS
 µS
 µS

µS

Event-driven : Vertical slicing

µS
 µS

µS

µS
 µS

Flow / Process

Resilient/reactive design

•  Resilience and responsiveness are mandatory

•  Elastic design for scalability

•  Start with isolation and latency control

•  Separate control and data flow

•  Many new challenges for developers

Event/data flow
 Event/data flow

Resource access

Error flow
 Control flow

µS

Isolation

Cloud provisioning model

•  Basis for elasticity at runtime

•  Basis for speed and flexibility at development time

•  Private, hybrid or public

•  Should be combined with container approaches (e.g., Docker)

•  “Natural” infrastructure for µService architecture

Container Manager

µS

µS

µS

µS

µS

µS

µS

µS

µS

µS

µS

µS

µS

µS

µS

Container

Explicitly declared communication paths

µService

Automate

•  Automate everything

•  Build, test & deployment (Continuous Delivery)

•  Resource provisioning (Cloud API)

•  Restart, failover, error handling (Resilience)

•  Starting and tearing down instances (Scalability)

Wrap-up

•  IT is the nervous system of a company

•  Delivery speed is the new benchmark

•  Architecture must support the drivers

•  The new architectures are different

•  New challenges for developers (& ops)

It’s the most disruptive and exciting change 
we have seen in IT for many years

Join the IT revolution!

@ufried

Uwe Friedrichsen | uwe.friedrichsen@codecentric.de | http://slideshare.net/ufried | http://ufried.tumblr.com

