¢t

L
2~ 5.September2013 H H H H r m u S Wissenstransfer
in Niirnberg £ t a par exce llence

Mafsnahmen gegen das Code-Chaos

INn Standard-Software

Erweiterung von Standard-Software um kundenindividuelle Funktionalitaten

Martin Aschoff

AGNITAS AG

+ AGNITAS

Martin Aschoft

Founder of AGNITAS AG

(e-mail & marketing automation)
= Managing Director Development & Technology
= Maintainer OpenEMM (open source application)

= Pastime Blogger (os-inside.org)

05.09.2013 2

+* AGNITAS
The Holy Grail: Standard Software
= develop once, sell/rent multiple times
= |ots of input to iImprove the software
= community helps with support

= sometimes an user even pays for a new feature

(and all other users benefit for free)

05.09.2013 3

+ AGNITAS

The Curse of Success

= more clients

-> more requests to customize features

= pigger clients

- more requests of highly customized features

= more highly customized features

- more difficulties to integrate into the mainline

05.09.2013 4

+ AGNITAS

The Challenge

Integrate customized functionality
AND

keep the mainline lean

05.09.2013 5

+ AGNITAS

If you fall in the short term

T— — —th

_\—‘___--_ -

05.09.2013 6

+* AGNITAS

If you fall in the long term

05.09.2013 -

+* AGNITAS
An Approach to Implement

Customized Functionality

= features of general interest: integrate into mainline

(advantage: update-stable)

= features of interest for several customers: integrate into mainline

and wrap with permission

= features of interest for only one customer: extension

(advantage: independent of core updates, mainline stays lean)

= comprehensive feature set of interest for only one client:

separate development trunk based on main trunk

05.09.2013 8

How It all begins

If (companyID == 815) {
Il special code
}else{
I/ default code

}

...and how it continues

If (companyID == 815 || companyID == 4711) {
Il special code
If (companyIlD ==4711){
Il very special code
}
}else{
/[default code

}

05.09.2013

+* AGNITAS

+* AGNITAS

Handling of Instance-Wide Customized
Parameters at Deploy Time

Template in build.properties.xslt

jdbc.emmDB.jndiName=<xsl:value-of select="properties/jdbc/emmDB/jndiName" />
jdbc.emmDB.dialect=<xsl:value-of select="properties/jdbc/emmDB/dialect" />

build.properties.xml for MySQL.:

<jdbc>
<emmDB>
<jndiName>emm_db</jndiName>
<dialect>org.hibernate.dialect. MySQLDialect</dialect>
</emmDB>
<cmsDB>
<jndiName>cms_db</jndiName>
<dialect>org.hibernate.dialect. MySQLDialect</dialect>
</cmsDB>
</jdbc>

05.09.2013 10

Handling of Instance-Wide Customized
Parameters at Deploy Time

build.properties.xml for Oracle:

<jdbc>
<emmDB>
<jndiName>emm_db</jndiName>
<dialect>org.hibernate.dialect.Oracle9Dialect</dialect>
</emmDB>
<cmsDB>
<jndiName>cms_db</[ndiName>
<dialect>org.hibernate.dialect.Oracle9Dialect</dialect>
</cmsDB>
</jdbc>

Merging by Ant script with xslt tag and tag extension xmltask

05.09.2013

+* AGNITAS

11

» AGNITAS
Handling of Instance-Wide Customized
Parameters at Run Time

SELECT * FROM config tbl;

F———_— F———— fo——————— +
| class | name | value |
F———_— +———— fo——————— +
system	licence	NULL
pickup	rdir	asp@l0.1.1.232
linkchecker	linktimeout	20000
linkchecker	threadcount	20
velocity	abortscripts	disabled
fom - e e et +

05.09.2013 12

Handling of Customer-Specific

Parameters at Run Time

DESC company tbl;

company_id
shortname
description
status
mailtracking
creator company id
mailerset
mailloop domain
rdir_domain
customer_ type
send_immediately
offpeak
notification_email
expire stat
max_fields
expire_bounce
expire onepixel
expire_cookie
expire recipient
expire_upload
max_recipients
export_notify
max_login_ fails
login_block_time
creation_date
timestamp

sector

business_field

05.09.2013

| int(11) unsigned
| varchar (30)
| varchar (100)

varchar (20)

int (11) unsigned
int (11)

int (11)

varchar (200)
varchar (100)
varchar (50)

int (11)

e e i e
5B B B 0 B
[e e e A B
Q o~
oS
[V S
R -
=
o
o

-
=}
[ad

B b
5 BB
ot o

- I
=] =]
[as [as

int

timestamp
| timestamp
| wvarchar (50)
| varchar (100)

YES |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
NO |
YES |
NO |
NO |
NO |
NO |
NO |
YES |
NO |
YES |
YES |

http://rdir.de
UNKNOWN

0

0

NULL

O O B W o O o o o
S o

w

300

0000-00-00 00:00:00
CURRENT_TIMESTAMP
NULL

NULL

+* AGNITAS

13

+* AGNITAS

And Iif that is not enough

DESC company_info_tbl;

Fom e oo Fo———— Fo———= o +
| Field | Type | Null | Key | Default |
Fom e oo Fo———— Fo———= o +
company id	int(11)	NO		0
cname	varchar (32)	NO		
cvalue	varchar (4000)	NO		
description	varchar (250)	NO \		
creation date	timestamp	NO \	0000-00-00 00:00:00	

| timestamp | timestamp | NO | | CURRENT TIMESTAMP

fom Fom F———— +——— et +

SELECT * FROM company info tbl;

fommm o o - Fom e fomm +
| company id | cname | cvalue | desc| creation_date | timestamp |
fomm - o R ittt - Fom R et e T +
0	keep-xml-files	true	...	2013-05-23 16:44:18	2013-05-23 16:44:18
0	use-extended-usertypes	true	...	2013-05-23 16:44:18	2013-05-23 16:44:18
0	url-default	http://rdir.de [...	2013-05-23 16:44:18	2013-05-23 16:44:18	
0	generate-coded-urls	false	...	2013-05-23 16:44:18	2013-05-23 16:44:18
0	url-profile	http://www.agnitas.de/emm/profil.html?id=% (company-id)	...	2013-05-23 16:44:18	2013-05-23 16:44:18
0	url-unsubscribe	http://www.agnitas.de/emm/abmeldung.html?id=% (company-id)	...	2013-05-23 16:44:18	2013-05-23 16:44:18
0	flush-buffer-size	2000	...	2013-05-23 16:44:18	2013-05-23 16:44:18
fomm - o R ittt - Fom R et e T +

05.09.2013 14

+* AGNITAS

Interfaces and Dependency Injection
Open Source:

<bean id="MailingStat" class="org.agnitas.stat.impl.MailingStatimpl" singleton="false">
<property name="dataSource" ref="dataSource" />
<property name="targetDao" ref="TargetDao" />
<property name="mailingDao" ref="MailingDao" />
</bean>
<bean id="MailingDao" class="org.agnitas.dao.impl.MailingDaolmpl">
<property name="dataSource" ref="dataSource" />
</bean>
<bean id="TargetDao" class="org.agnitas.dao.impl.TargetDaolmpl">
<property name="dataSource" ref="dataSource" />
</bean>

05.09.2013 15

+* AGNITAS

Interfaces and Dependency Injection

Commercial Version:

<bean id="MailingStat" class="com.agnitas.stat.impl.ComMailingStatimpl" singleton="false">
<property name="dataSource" ref="dataSource" />
<property name="targetDao" ref="TargetDao" />
<property name="mailingDao" ref="MailingDao" />
<property name="companyDao" ref="CompanyDao" />
</bean>
<bean id="MailingDao" class="com.agnitas.dao.impl.ComMailingDaolmpl">
<property name="dataSource" ref="dataSource" />
<property name="companyDao" ref="CompanyDao" />
<property name="undoMailingDao" ref="UndoMailingDao" />
<property name="undoMailingComponentDao" ref="UndoMailingComponentDao" />
<property name="undoDynContentDao" ref="UndoDynContentDao" />
</bean>
<bean id="TargetDao" class="org.agnitas.dao.impl. TargetDaolmpl">
<property name="dataSource" ref="dataSource" />
</bean>

05.09.2013 16

+* AGNITAS

Code Components Building on Each Other

customized g
extensions

commercial code

open source code

open source stack (3" party software)

05.09.2013 17

+* AGNITAS

Trunks Building on Top of Each Other

public abstract class BaseDaolmpl

{ // code of base class }

public class MailingDaolmpl extends BaseDaolmpl implements MailingDao
{ // code of open source class }

public class ComMailingDaolmpl extends MailingDaolmpl implements
ComMailingDao
{ // code of commercial class }

public class ConradMailingDaolmpl extends ComMailingDaolmpl
Implements ConradMailingDao
{ // code of customer-specific class}

05.09.2013 18

+ AGNITAS
Plugin Architecture
Advantages for developers:

= an extension developer does not have to comprehend the whole
code of the software but only needs to understand its extension

interface, consisting of extension points and the extension API

= the software core does not get bloated with functionality

(less complexity, less dependencies)

= extensions can be maintained independently from the core

software and vice versa

05.09.2013 19

+ AGNITAS

Plugin Architecture

Advantages for developers:

= updates of the software core are easier to execute because the
only dependency on existing extensions are the locations of

extension points and the signatures of API classes and methods

= customer-specific features do not have to be integrated into the

software core

= when secondary features have to be refactored/extended, they can

be sourced out to an extension to keep the core lean

05.09.2013 20

+ AGNITAS

Plugin Architecture

Advantages for users:

= development time for customer-specific features implemented as

extensions will drop, leading to lower costs

= extensions can be deployed at any time, independently from release

cycles of the software core
= users can develop their own extensions
= users can use extensions developed by third parties

= if the code of the whole extension system is open source, it makes
comprehension of the extension interface even easier because it

provides maximum transparency

05.09.2013 21

+* AGNITAS
Components of an Extension

Architecture

= Extension API: official methods to be used by extension

= Extension Points: pre-defined hook in the software core
(the contact), which defines an interface (the contract) that will
be implemented by a class of an extension that was registered

for this extension point before

= Extension Manager: sub-system of the software core with

functionality to manage the lifecycle of extensions

05.09.2013 22

+* AGNITAS
Components of an Extension

Architecture

= Extension Registry: central storage where the extension manager
registers (and unregisters) extensions and holds all necessary

configuration data from all installed extensions

= Extension Repository: location where public extensions

will be available for download

05.09.2013 23

+ AGNITAS

Types of Extension Points

= GUI extension points to insert output of an

extension into an existing JSP

= pavigation extension points to add new menu items

or tabs to the existing navigation

= feature extensions point to add new code which

enhances the functionality

05.09.2013 24

+ AGNITAS

Components of an Extension

= a manifest file plugin.xml in XML format, holding configuration
data to store in the extension registry (like version info, extension

points, entries for extension points, etc.)
= resource files like property files for messages, navigation, etc.

= Java classes with program code of an extension (usually service

layer classes, DAO layer classes and third-party JARS)

= JSPs to implement the GUI of an extension (sometimes

accompanied with files for Javascript, HTML, CSS and images)

05.09.2013 25

+* AGNITAS

Example of a Manifest File

<plugin id="mailing_statistics_export" version="0.0.1" vendor="Agnitas AG">

</plugin>

05.09.2013

<attributes>
<attribute id="i18n-bundle" value="messages-plugin” />
<attribute id="plugin-name" value="Export mailing statistics" />
</attributes>

<!-- Dependencies to other plugins -->
<requires>

<import plugin-id="emm_core" />

<import plugin-id="emm_core_navigation" />
</requires>

<!-- File structure setup -->
<runtime>

<library id="mailing-statistics-export-feature" path="classes/" type="code" />
</runtime>

<!-- Feature and navigation extension point bindings -->
<extension plugin-id="emm_core" point-id="featurePlugin" id="mailing-statistics-export">

<parameter id="class" value="org.agnitas.emm.plugin.mailingstatisticsexport.MailingStatisticsExportFeature" />
</extension>

<extension plugin-id="emm_core_navigation" point-id="tabs.statistics.compare" id="mailing-statistics-export-navigation">
<parameter id="navigation-bundle" value="mailingStatExportTabs"/>
</extension>

26

+ AGNITAS

JPF Framework (jpf.sourceforge.net)

= Inspired by plugin mechanism of Eclipse 2.x
= development efforts retired in 2007

= just one active (but positive) reference found (DMS

LogicalDOC, www.logicaldoc.com)

05.09.2013 27

+ AGNITAS

JPF Framework (jpf.sourceforge.net)

9& Java Plug-in Framework (JPF) Project ‘
Welcome to the Java Plug-in Framework project, the open source, LGPL licensed plug-in infrastructure library for new or existing Java projects. JPF can greatly improve the modularity and extensibilty of your Java systems and

minimize support and maintenance costs.

What is JPF? |

Home

System Overview
Project Roadmap
TODO List

Questions & Answers

JPF provides a runtime engine that dynamically discovers and loads "plug-ins". A plug-in is a structured component that describes itself to JPF using a "manifest”. JPF maintains a registry of available plug-ins and the functions they
provide (via extension points and extensions)

One major goal of JPF is that the application {and its end-user) should not pay any memory or performance penalty for plug-ins that are installed, but not used. Plug-ins are added to the registry at application start-up or while the

application is running but they are not loaded until they are called
References

License Main features

Open framework architecture

Concepts The framework APl is designed as a set of Java interfaces and abstract classes. Developers can choose to implement their own "vision" of plug-ins and Framewaork runtime behavior. "Standard" or default implementations are
provided by JPF so developers can start using the framewaork quickly and easily.

e CE Clear and consistent APl design

Tutorial The JPF API has been carefully designad in order to reduce the the time developers need to become familiar with it
JPF & Java IDE Built-in integrity check
AP| Reference Reqgistered plug-ins are checked for consistency during JPF start up and a detailed report of results is available.

Plug-ins are self-documenting
Plugin DTD Plug-in developers may include documentation in the plug-in manifest. This includes inline comments or references to documents bundled with the plug-in
JPF Tools Reference Plug-in dependency check
Configuration Plug-in developers can declare dependencies between plug-ins. Dependency declarations can include the desired version ID and versions matching rules,
Strongly typed extension parameters
The plugHn manifest syntax provides a mechanism for declaring typed extension points parameters. This information is used by JPF when finding and loading extensions.
Lazy plug-in activation
Plug-in classes are loaded into memory only when they are actually needed. This feature is provided by specially designed Java class loaders instantiated for each plug-in
Project Summary "On the fly" plug-in registration and activation
Plug-ins can be "hotregistered" and even de-registered during application execution. What's more, registered plug-ins can be activated and deactivated "on the fly", minimizing runtime resource usage.

Reference

Project News

DErileEe] What can JPF bring to your Java project?

Faorum

Plug-in component model
A JPF Plug-in is a component that has: a name (ID), a version identifier, code and/or other resources, a well-defined import interface, a well-defined export interface, and well-defined places where it can be extended (extension
German (de) points). You can think of plug-ins as a module for your application
Divide large applications into smaller, more manageable parts
Building applications as a set of independent, cooperating components is particularly useful when developing in teams
Explicitly define the systems architecture
SOURCEFORGE.NET* Plug-ins, prerequisites, extension points and extensions allow you to clearly define the architecture of your system in an easy-to-understand and standard way.
Make the application easily extendable
With extension points you can allow other developers to extend your application simply.
Documentation embedded into the system
This is more than javadoc. You can include documentation in the plug-in manifest and link it with any additional resources.
Tight control over application consistency
JPF's built-in integrity check keeps a close watch on your application's health, reducing maintenance costs.

05.09.2013 28

+ AGNITAS

Component Architecture (Java)

= standard module system "Jigsaw": first draft in 2006, postponed from

Java 7 to Java 8 and from Java 8 to Java 9 (20167?)

latest news: according to the Java lead developer, Jigsaw will be restarted

= OSGi: de-facto standard for modular Java applications with dependency
resolution and definable visibility at bundle level

(to hide code)

= OSGi is big in application servers (GlassFish, JBoss), development tools

(Eclipse, JIRA) and frameworks (Apache Camel, Sling)

= OSGiis not so big in (standard) applications

05.09.2013 29

+ AGNITAS

Problems with OSGi for applications
(my personal opinion)

= great technology, but steep learning curve

= developers have to deal with a lot of low level stuff
(lifecycle management, service listeners, bundle

versioning, hot deployment, etc.)

= building web applications looks even more complicated

05.09.2013 30

+ AGNITAS

Problems with OSGi for applications
(my personal opinion)

= everything must be a bundle - including 3rd party JARS

= for smaller projects and teams often overkill

(application developers just want to get the job done)

= additional barrier (learning curve) for third parties to

develop extensions

05.09.2013 31

H
2~ 5.September2013 H H H H r m u S Wissenstransfer
in Niirnberg H par excellence

Sie wollen noch mehr wissen?

Martin Aschoff
c/o AGNITAS AG
Werner-Eckert-Str. 6
81829 Miinchen

Telefon: 089/552908-68
E-Mail: maschoff@agnitas.de

