
Wir bauen uns ein fehlertolerantes System
Muster für Fehlertoleranz einfach umgesetzt

Uwe Friedrichsen
codecentric AG

Uwe Friedrichsen

@ufried

Your web server doesn‘t look good …

The dreaded SiteTooSuccessfulException …

I can hardly hear you …

It‘s all about production!

Production

Availability

Resilience

Fault Tolerance

It‘s also about scale out!

it‘s

huge

let‘s

focus

Design level

Fault

Error

Failure

Crash failure

Omission failure

Timing failure

Response failure

Byzantine failure

MTTF

MTTR

MTBF

Pattern taxonomy

Fault prevention

Fault tolerant architecture

Error detection Fault treatment

Error recovery

Error mitigation

Domain
Architectural pattern

When to use
To prevent the system to fail as a whole

Whenever possible

How to implement
Decouple units/components as much as possible

Implement error checks and barriers at unit boundaries

Let units fail silently if an error is detected

Related Concepts
Redundancy, failover, error handler, …

Tradeoffs
Finding of good units is a non-trivial design task

Balance between added value and added complexity needs to

be kept

Units of mitigation

Domain
Architectural pattern

When to use
The system must not become unavailable

Minimizing MTTR (from an external perspective) is important

How to implement
Provide the component/unit of mitigation several times

Align your solution to the required level of availability

Use infrastructure means if available and suitable

Related Concepts
Failover, recovery blocks, routine excercise, …

Tradeoffs
Balance costs and level of availability carefully

Pure software redundancy needs extra implementation effort

Redundancy

Domain
Architectural pattern

When to use
Error processing or mitigation important for system to work

Error cannot be treated successfully on local level

How to implement
Design different levels of error handling, each with a more

complete view of the system

Plan for more drastic measures to handle error at each level

Use infrastructure built-in propagation techniques if available

Related Concepts
Let it crash, limit retries, rollback, failover, reset, …

Tradeoffs
Implementing a good escalation strategy is complex

Decision when to escalate is often hard

Escalation

Pattern taxonomy

Fault prevention

Fault tolerant architecture

Error detection Fault treatment

Error recovery

Error mitigation

Domain
Error detection

When to use
Continuous availability is important

Failures and crashes need to be detected quickly

How to implement
Create an independent monitor component

Let the monitor share as few resources as possible with the

monitored components

Check if out-of-the-box solutions are sufficient, use if applicable

Related Concepts
Acknowledgement, heartbeat, watchdog, supervisor-worker, …

Tradeoffs
Complexity and load of monitored component usually raised

Finding good metrics and escalation thresholds is often hard

Monitor

Domain
Error detection

When to use
Always in a scale-out environment

How to implement
Add a version indicator to each single entity

When accessing related entities always check if the versions

match

Update the elder entity on the fly to match the newer entity if

possible, accept inconsistency otherwise

Related Concepts
Vector clocks, BASE, replication, quorum, routine maintenance

Tradeoffs
Must be implemented explicitly (which is a lot of work)

Sometimes hard to figure out how to repair the outdated entity

Data Versioning

Domain
Fault prevention/Error detection

When to use
System needs to run failure-free for long periods

Availability is very important

How to implement
Create background jobs that check components and data

Start jobs automatically if possible, otherwise by an operator

Combine findings incrementally with (correcting) fault handlers

Related Concepts
Automation, routine audits, routine exercise, …

Tradeoffs
Can create a lot of information that is hard to handle manually

Cost/benefit analysis is usually needed

Routine maintenance

Pattern taxonomy

Fault prevention

Fault tolerant architecture

Error detection Fault treatment

Error recovery

Error mitigation

Domain
Error recovery

When to use
An error has been detected and needs to be handled

The system should stay as simple and maintainable as possible

How to implement
Delegate work to a dedicated error handler if an error occurs

Encapsulate all error recovery related code in the error handler

Shift the error handler to a different system part if suitable

Related Concepts
Fault observer, restart, rollback, roll-forward, final handling, …

Tradeoffs
Needs explicit design upfront

Just using catch-blocks or other programming-language-

provided constructs is tempting

Error handler

Domain
Error recovery

When to use
An error has occurred and the system needs to recover

Select strategy depending on the severity of the error and data

How to implement
Retry if it seems to be a transient error (but limit retries)

Rollback to a checkpoint if you have the data available

Roll-Forward to a reference point if you don‘t have the data,

the time or the error is sticky

Use restart if nothing else helps (the error is really hard)

Related Concepts
Escalation, checkpoint, reference point, limit retries, …

Tradeoffs
Escalation strategy needs to be balanced

Recovery strategy

Domain
Error recovery

When to use
An error has occured and the system needs to recover quickly

Fault handling will take too long and compromise availability

How to implement
Provide component redundant

Switch to spare component in case of error

Use infrastructure solutions if suitable

Related Concepts
Redundancy, escalation, restart, …

Tradeoffs
Different failover strategies (hot standby, cold standby, …) affect

costs and effort – cost/benefit analysis usually required

Failover

Pattern taxonomy

Fault prevention

Fault tolerant architecture

Error detection Fault treatment

Error recovery

Error mitigation

Domain
Error mitigation

When to use
System must keep up service even under high load

Long response times are worse than rejecting a request upfront

How to implement
Monitor system load and response times

Implement gatekeeper at system entry

Let gatekeeper reject requests if monitored response times and

load increase

Related Concepts
Share load, finish work in progress, fresh work before stale, …

Tradeoffs
Consequences of dropping requests need to be considered well

Shed load

Domain
Error mitigation

When to use
System must work reliable even in presence of corrupted data

Corrupted data cannot be fixed when detected

How to implement
Flag data to mark it as faulty

Make sure flagged data is not used by rest of the system

Use common markers if suitable (NaN, null, …)

Related Concepts
Routine audits, error correcting codes, …

Tradeoffs
Ignoring marked data is a lot of manual implementation effort

Hard to implement à posteriori into an existing system

Marked data

Pattern taxonomy

Fault prevention

Fault tolerant architecture

Error detection Fault treatment

Error recovery

Error mitigation

Domain
Fault treatment

When to use
Fault correction needs a system update (i.e. software patch)

Risk of introducing new faults by the update should be as small

as possible

How to implement
Deliver as small patches as possible

Use continuous delivery techniques

Automate your delivery chain to keep update effort low

Related Concepts
Continuous delivery, let sleeping dogs lie, root cause analysis, …

Tradeoffs
Without a solid delivery chain automation small patches will be

extremely expensive and error prone

Small patches

Lots of patterns
Maintenance interface, someone in charge, fault correlation,

voting, checksums, leaky bucket container, quarantine,

data reset, overload toolboxes, queue for resources,

slow it down, fresh work before stale, add jitter, …

Recovery oriented computing
Microreboot

Undo/Redo

Crash-only software

Highly scalable systems
Many complementary patterns and priciples

And many more …
Fault tolerance in other areas (real-time, extreme conditions)

Detection of and recovery from byzantine errors

Theoretical foundations, advanced techniques and algorithms

And a lot more stuff …

Implementation level

Pattern #1

Timeouts

Timeouts (1)

// Basics

myObject.wait(); // Do not use this by default

myObject.wait(TIMEOUT); // Better use this

// Some more basics

myThread.join(); // Do not use this by default

myThread.join(TIMEOUT); // Better use this

Timeouts (2)

// Using the Java concurrent library

Callable<MyActionResult> myAction = <My Blocking Action>

ExecutorService executor = Executors.newSingleThreadExecutor();

Future<MyActionResult> future = executor.submit(myAction);

MyActionResult result = null;

try {

 result = future.get(); // Do not use this by default

 result = future.get(TIMEOUT, TIMEUNIT); // Better use this

} catch (TimeoutException e) { // Only thrown if timeouts are used

 ...

} catch (...) {

 ...

}

Timeouts (3)

// Using Guava SimpleTimeLimiter

Callable<MyActionResult> myAction = <My Blocking Action>

SimpleTimeLimiter limiter = new SimpleTimeLimiter();

MyActionResult result = null;

try {

 result =

 limiter.callWithTimeout(myAction, TIMEOUT, TIMEUNIT, false);

} catch (UncheckedTimeoutException e) {

 ...

} catch (...) {

 ...

}

Pattern #2

Circuit Breaker

Circuit Breaker (1)

Client Resource Circuit Breaker

Request

Resource unavailable

Resource available

Closed Open

Half-Open

Lifecycle

Circuit Breaker (2)

Closed

on call / pass through

call succeeds / reset count

call fails / count failure

threshold reached / trip breaker

Open

on call / fail

on timeout / attempt reset
trip breaker

Half-Open

on call / pass through

call succeeds / reset

call fails / trip breaker

trip breaker attempt reset

reset

Source: M. Nygard, „Release It!“

Circuit Breaker (3)

public class CircuitBreaker implements MyResource {

 public enum State { CLOSED, OPEN, HALF_OPEN }

 final MyResource resource;

 State state;

 int counter;

 long tripTime;

 public CircuitBreaker(MyResource r) {

 resource = r;

 state = CLOSED;

 counter = 0;

 tripTime = 0L;

 }

 ...

Circuit Breaker (4)

 ...

 public Result access(...) { // resource access

 Result r = null;

 if (state == OPEN) {

 checkTimeout();

 throw new ResourceUnavailableException();

 }

 try {

 r = r.access(...); // should use timeout

 } catch (Exception e) {

 fail();

 throw e;

 }

 success();

 return r;

 }

 ...

Circuit Breaker (5)

 ...

 private void success() {

 reset();

 }

 private void fail() {

 counter++;

 if (counter > THRESHOLD) {

 tripBreaker();

 }

 }

 private void reset() {

 state = CLOSED;

 counter = 0;

 }

 ...

Circuit Breaker (6)

 ...

 private void tripBreaker() {

 state = OPEN;

 tripTime = System.currentTimeMillis();

 }

 private void checkTimeout() {

 if ((System.currentTimeMillis - tripTime) > TIMEOUT) {

 state = HALF_OPEN;

 counter = THRESHOLD;

 }

 }

 public State getState()

 return state;

 }

}

Pattern #3

Fail Fast

Fail Fast (1)

Client Resources Expensive Action

Request
Uses

Fail Fast (2)

Client Resources

Expensive Action

Request

Fail Fast Guard

Uses

Check availability

Forward

Fail Fast (3)

public class FailFastGuard {

 private FailFastGuard() {}

 public static void checkResources(Set<CircuitBreaker> resources) {

 for (CircuitBreaker r : resources) {

 if (r.getState() != CircuitBreaker.CLOSED) {

 throw new ResourceUnavailableException(r);

 }

 }

 }

}

Fail Fast (4)

public class MyService {

 Set<CircuitBreaker> requiredResources;

 // Initialize resources

 ...

 public Result myExpensiveAction(...) {

 FailFastGuard.checkResources(requiredResources);

 // Execute core action

 ...

 }

}

Pattern #4

Shed Load

Shed Load (1)

Clients Server

Too many Requests

Shed Load (2)

Server

Too many Requests

Gate Keeper

Monitor

Requests

Request Load Data Monitor Load

Shedded Requests

Clients

Shed Load (3)

public class ShedLoadFilter implements Filter {

 Random random;

 public void init(FilterConfig fc) throws ServletException {

 random = new Random(System.currentTimeMillis());

 }

 public void destroy() {

 random = null;

 }

 ...

Shed Load (4)

 ...

 public void doFilter(ServletRequest request,

 ServletResponse response,

 FilterChain chain)

 throws java.io.IOException, ServletException {

 int load = getLoad();

 if (shouldShed(load)) {

 HttpServletResponse res = (HttpServletResponse)response;

 res.setIntHeader("Retry-After", RECOMMENDATION);

 res.sendError(HttpServletResponse.SC_SERVICE_UNAVAILABLE);

 return;

 }

 chain.doFilter(request, response);

 }

 ...

Shed Load (5)

 ...

 private boolean shouldShed(int load) { // Example implementation

 if (load < THRESHOLD) {

 return false;

 }

 double shedBoundary =

 ((double)(load - THRESHOLD))/

 ((double)(MAX_LOAD - THRESHOLD));

 return random.nextDouble() < shedBoundary;

 }

}

Shed Load (6)

Shed Load (7)

Pattern #5

Deferrable Work

Deferrable Work (1)

Client

Requests

Request Processing

Resources

Use

Routine Work

Use

OVERLOAD

Deferrable Work (2)

Without

Deferrable Work

100%

OVERLOAD

With

Deferrable Work

100%

Request Processing

Routine Work

// Do or wait variant

ProcessingState state = initBatch();

while(!state.done()) {

 int load = getLoad();

 if (load > THRESHOLD) {

 waitFixedDuration();

 } else {

 state = processNext(state);

 }

}

void waitFixedDuration() {

 Thread.sleep(DELAY); // try-catch left out for better readability

}

Deferrable Work (3)

// Adaptive load variant

ProcessingState state = initBatch();

while(!state.done()) {

 waitLoadBased();

 state = processNext(state);

}

void waitLoadBased() {

 int load = getLoad();

 long delay = calcDelay(load);

 Thread.sleep(delay); // try-catch left out for better readability

}

long calcDelay(int load) { // Simple example implementation

 if (load < THRESHOLD) {

 return 0L;

 }

 return (load – THRESHOLD) * DELAY_FACTOR;

}

Deferrable Work (4)

Pattern #6

Leaky Bucket

Leaky Bucket (1)

Leaky Bucket

Fill

Problem

occured

Periodically

Leak

Error

Handling

Overflowed?

public class LeakyBucket { // Very simple implementation

 final private int capacity;

 private int level;

 private boolean overflow;

 public LeakyBucket(int capacity) {

 this.capacity = capacity;

 drain();

 }

 public void drain () {

 this.level = 0;

 this.overflow = false;

 }

 ...

Leaky Bucket (2)

 ...

 public void fill() {

 level++;

 if (level > capacity) {

 overflow = true;

 }

 }

 public void leak() {

 level--;

 if (level < 0) {

 level = 0;

 }

 }

 public boolean overflowed() {

 return overflow;

 }

}

Leaky Bucket (3)

Pattern #7

Limited Retries

// doAction returns true if successful, false otherwise

// General pattern

boolean success = false

int tries = 0;

while (!success && (tries < MAX_TRIES)) {

 success = doAction(...);

 tries++;

}

// Alternative one-retry-only variant

success = doAction(...) || doAction(...);

Limited Retries (1)

More Patterns

• Complete Parameter Checking

• Marked Data

• Routine Audits

Further reading

1. Michael T. Nygard, Release It!,

Pragmatic Bookshelf, 2007

2. Robert S. Hanmer,

Patterns for Fault Tolerant Software,

Wiley, 2007

3. James Hamilton, On Designing and

Deploying Internet-Scale Services,

21st LISA Conference 2007

4. Andrew Tanenbaum, Marten van Steen,

Distributed Systems – Principles and

Paradigms,

Prentice Hall, 2nd Edition, 2006

It‘s all about production!

Uwe Friedrichsen

@ufried

uwe.friedrichsen@codecentric.de

http://www.slideshare.net/ufried/

http://blog.codecentric.de/author/ufr

