
X ways to improve your
web application's performance

Eduard Tudenhöfner
adesso AG

Investing in Performance
really pays off

Why is performance important?

A page that was 2 seconds slower
 results in a 4.3%

drop in revenue/user
(Bing)

400 ms delay cause 0.59% drop
in searches/user

(Google)

400 ms slowdown cause
5-9% drop in full-page traffic

(Yahoo)

Introducing gzip compression resulted
in 13-25% speedup and cut outbound

network traffic by 50%
(Netflix)

Source: www.stevesouders.com

Backend Performance

► Memory Optimizations & Java GC
Tuning

► App Server Performance
Improvements

► DB & Persistence Layer Tuning

► …

► Might require:

– redesigning app architecture

– adding/modifying HW

– distributing databases

Frontend Performance

► Reducing number of requests

► Reducing transferred data

► …

► Frontend improvements:

– require less time and
resources

– easier applicable

– can have significant outcomes

What to expect?

Backend Performance

► Memory Optimizations & Java GC
Tuning

► App Server Performance
Improvements

► DB & Persistence Layer Tuning

► …

► Might require:

– redesigning app architecture

– adding/modifying HW

– distributing databases

Frontend Performance

► Reducing number of requests

► Reducing transferred data

► …

► Frontend improvements:

– require less time and
resources

– easier applicable

– can have significant outcomes

What to expect?

Where does the time go?

Where does the time go?

Main Herbstcampus Page

Where does the time go?

HTML document
Javascript

CSS

Images

Where does the time go?

HTML document
Javascript

CSS

Images

Clearly visible where the time does NOT go:

does not go into downloading the HTML document incl. backend processing

~80-90% of the time spent
downloading all the components

Backend processing
& downloading HTML

Bandwidth / Latency

Bandwidth

► Important, but is not the only factor in
performance

► Higher Bandwidth good for:

– Audio/video streaming

– Large downloads

Latency

► primarily determined by the distance
a request must travel

► Physics get in our way

Bandwidth / Latency

Bandwidth

► Important, but is not the only factor in
performance

► Higher Bandwidth good for:

– Audio/video streaming

– Large downloads

Latency

► primarily determined by the distance
a request must travel

► Physics get in our way

Bandwidth / Latency

Source: More Bandwidth Doesn’t Matter (much), Mike Belshe

Bandwidth / Latency

What is more important?

► Bandwidth is important, but is not the only factor

► HTTP uses short, bursty connections (for downloading web content)
– RTT (round-trip-time) dominates performance more than bandwidth

does

► Faster browsing experience → reduce RTT

How to improve?

How to improve? → Fewer HTTP Requests

Fewer HTTP Requests

► Simple Rule: less components to download = less round trips

► But: we don't want to make tradeoffs between performance and design

► What to do?
– Image Sprites

– Combine JS / CSS

– Improve caching (more to come in own chapter)

How to improve? → Fewer HTTP Requests

CSS Image Sprites

How to improve? → Fewer HTTP Requests

CSS Image Sprites

Before

After

Examples implemented at: http://modpagespeed.com

How to improve? → Fewer HTTP Requests

CSS Image Sprites

Before

After

2.26 s

1.33 s

Savings: ~41%

Examples implemented at: http://modpagespeed.com

How to improve? → Fewer HTTP Requests

Combine Javascript

Before

After

Examples implemented at: http://modpagespeed.com

How to improve? → Fewer HTTP Requests

Combine Javascript

Before

After

667 ms

348 ms

Savings: ~48%

Examples implemented at: http://modpagespeed.com

How to improve? → Fewer HTTP Requests

Combine CSS

Before

After

Examples implemented at: http://modpagespeed.com

How to improve? → Fewer HTTP Requests

Combine CSS

Before

After

500 ms

371 ms

Savings: ~26%

Examples implemented at: http://modpagespeed.com

How to improve? → Use a CDN

CDN (Content Delivery Network)

► Simple Rule: content closer to the user = lower latency

► to implement geographically dispersed content:
– we want to bring static content closer to the user

– we don't want to redesign our web app to work in a distributed way (clustering, …)

► dispersing content is much easier than dispersing an entire application

► nice benefit → spikes in traffic during peak load times can be absorbed

► CDN Providers (taken from http://goo.gl/l4UmJC)
– Akamai

– Limelight Networks

– CacheFly

– CloudFare

– MaxCDN

How to improve? → Improve Caching

Caching

► We want to maximize the browser's caching capabilities

► First-time visitor might have to make much more # of requests than a returning user

► What to cache?
– Images, Scripts, Stylesheets, Flash, …

► How to handle updates to cached components?

– Rename them (e.g. use version numbers)

► How to cache?
– add Expires / Cache-Control Header

– configure ETags

How to improve? → Improve Caching

Expires Header

► Tells the browser that this response won't be
stale until a given date/time

► # of requests is reduced by one

► mod_expires

Amazon

How to improve? → Improve Caching

Expires Header

► What if Expires header is not set?
– Component is stored in the browser's

cache

– Conditional request is required

Herbstcampus
Herbstcampus

How to improve? → Improve Caching

Cache Control Header (since HTTP 1.1)

► introduced to overcome limitations of
Expires header

– clock synchronization

Amazon

How to improve? → Improve Caching

Configure/Remove ETags (Entity Tags)

► Uniquely identifies a specific version of a resource

► Apache 2.x ETag format
– <inode-timestamp-size>

– Should be changed for clustered environments

► Problem
– Inode might be different for 2 servers

– http://www.apacheweek.com/issues/02-01-18

► Example
– 10 servers in our cluster

– Probability 1/10 = 10% that user will get a 304
Code

– 90% → wasteful 200 Code

Herbstcampus

Amazon

Source: http://httpd.apache.org/docs/2.2/mod/core.html

http://www.apacheweek.com/issues/02-01-18

How to improve? → Gzip Components

Enable Gzip Compression

► Simple rule: less data to transmit = transfer time decreases

► Easiest of all techniques & has biggest impact

► What to compress?
– Any text response (HTML, Scripts, CSS, XML, JSON)

– Not necessary to compress images, PDFs (see http://goo.gl/7WYx1l)

► How? → Apache mod_deflate

YouTube

http://goo.gl/7WYx1l

How to improve? → Gzip Components

Enable Gzip Compression

Nothing compressed
Main Herbstcampus

 Page

Nothing compressed

How to improve? → Gzip Components

Enable Gzip Compression

1
2

3
4

Total Possible Savings: ~73.3 KB

1
2

3
4

How to improve? → Gzip Components

Enable Gzip Compression

1
2

3
4

Total Possible Savings: ~73.3 KB

1
2

3
4

File Size Sav. in KB Sav. in %
HTML (1) 11.0 KB 7.1 KB 64.5 %
CSS (2) 8.7 KB 5.6 KB 64.4 %
JS (3) 89.7 KB 59.6 KB 66.4 %
JS (4) 1.7 KB 987 B 58.1 %

111.1 KB 73.3 KB ~65 %

How to improve? → Minification

Minify JS / CSS

► Simple rule: less data to transmit = transfer time decreases

► Minification = process of removing unnecessary characters

How to improve? → Minification

Minify JS / CSS

► Simple rule: less data to transmit = transfer time decreases

► Minification = process of removing unnecessary characters

Herbstcampus JS File

Savings: 58%
Code minified with YUI Compressor

How to improve? → Minification

Minify JS / CSS

► Simple rule: less data to transmit = transfer time decreases

Herbstcampus CSS File

Savings: 25%

Code minified with YUI Compressor

How to improve? → Correct Placement of Files

Stylesheets at Top / JS at Bottom

► browser should start rendering as early as possible (user perceives a faster
loading page)

► anything below the script is blocked from rendering and downloading until after
the script is loaded (even when threads are available)→ entire page is delayed

JS blocks downloads

How to improve? → Correct Placement of Files

Stylesheets at Top / Scripts at Bottom Script at the TOP

CGI Script that sleeps for 10s

Example implemented at: http://stevesouders.com/examples/rule-js-bottom.php

How to improve? → Correct Placement of Files

Stylesheets at Top / Scripts at Bottom
Script at the Bottom

Example implemented at: http://stevesouders.com/examples/rule-js-bottom.php

How to improve? → Reduce Redirects

Reduce Redirects
3xx Redirection:
“This class of status code indicates that further action
needs to be taken by the user agent to fulfil the request.”

From Wikipedia

Redirect

Entire Page
is delayed

How to improve? → Avoid Redirects

Reduce Redirects

► Redirect blocks entire page loading (worse than putting Scripts at the TOP)

► Most wasteful redirect is the missing trailing '/'
– www.google.de/nexus/7 → redirect to: www.google.de/nexus/7/

► Workaround?

– Apache Alias → Alias /myurl /usr/local/apache/...

– Apache mod_rewrite

– Note: both do not solve the problem of finding URLs relative to the current directory

http://www.google.de/nexus/7
http://www.google.de/nexus/7/

Tools (just a few)

Which Tools to Use?

Tools

► Chrome Developer Tools (https://developers.google.com/chrome-developer-tools/)

Source: https://developers.google.com/chrome-developer-tools/

https://developers.google.com/chrome-developer-tools/
https://developers.google.com/chrome-developer-tools/

Which Tools to Use?

Tools

► http://www.webpagetest.org/
– Allows to simulate different RTTs / Browsers / Geographic Locations /

Bandwidths

http://www.webpagetest.org/

Which Tools to Use?

Tools

► JAWR (jawr.java.net)
– Built-in minification

– Enforced caching

– Bundling of resources

– CSS image sprite generation

– Can be used with (JSF, Spring MVC, Wicket, Grails, …)

► mod_pagespeed (modpagespeed.com)
● Apache module for rewriting web pages to reduce latency and

bandwidth

● Automatic website and asset optimization

● 40+ configurable optimization filters

Thank you for your Attention!

eduard.tudenhoefner@adesso.de
www.adesso.de

mailto:eduard.tudenhoefner@adesso.de
http://www.adesso.de/

Noteworthy Literature

Literature & Sources

► High Performance Web Sites, Steve Souders

► Even Faster Web Sites, Steve Souders

► High Performance Browser Networking, Ilya Grigorik

► Google's „Make the Web Faster“, https://developers.google.com/speed/

► Web Performance Optimization, http://goo.gl/4xjs

► Improve the performance of your web applications, IBM developerWorks,
http://goo.gl/UD5Ksj

https://developers.google.com/speed/
http://goo.gl/4xjs
http://goo.gl/UD5Ksj

	Titel des Vortags – 40pt Untertitel des Vortrags – 18pt
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

