
Java SE 8 & Beyond

Dalibor Topic
ORACLE Deutschland B.V. & Co. KG

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Informaion Protection Policy Classification from Slide 7
1

Java SE 8 and Beyond
Dalibor Topić (@robilad)
Principal Product Manager, Java Platform Group
September 4th, 2012 - Herbstcampus

Tuesday, September 4, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.
2

The following is intended to outline our general product
direction. It is intended for information purposes only, and
may not be incorporated into any contract. It is not a
commitment to deliver any material, code, or functionality,
and should not be relied upon in making purchasing
decisions.
The development, release, and timing of any features or
functionality described for Oracle’s products remains at
the sole discretion of Oracle.

Tuesday, September 4, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.
3

Priorities for the Java Platforms

Grow Developer Base

Grow Adoption

Increase Competitiveness

Adapt to change

Tuesday, September 4, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.
4

Evolving the Language
From “Evolving the Java Language” - JavaOne 2005
• Java language principles
– Reading is more important than writing
– Code should be a joy to read
– The language should not hide what is happening
– Code should do what it seems to do
– Simplicity matters
– Every “good” feature adds more “bad” weight
– Sometimes it is best to leave things out

• One language: with the same meaning everywhere
• No dialects

• We will evolve the Java language
• But cautiously, with a long term view
• “first do no harm”

also “Growing a Language” - Guy Steele 1999
 “The Feel of Java” - James Gosling 1997

Tuesday, September 4, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.
5

Java SE 7 Release Contents

• Java Language
• Project Coin (JSR-334)

• Class Libraries
• NIO2 (JSR-203)
• Fork-Join framework, ParallelArray (JSR-166y)

• Java Virtual Machine
• The DaVinci Machine project (JSR-292)
• InvokeDynamic bytecode

• Miscellaneous things
• JSR-336: Java SE 7 Release Contents

Tuesday, September 4, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.
6

How Java Evolves and Adapts

JSR-348: JCP.next

Tuesday, September 4, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.
7

Tuesday, September 4, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.
8

Tuesday, September 4, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.
9

Tuesday, September 4, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.
10

Tuesday, September 4, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.
11

Tuesday, September 4, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.
12

JVM Convergence

Tuesday, September 4, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.
13

Tuesday, September 4, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.
14

Tuesday, September 4, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.
15

The (Performance) Free Lunch Is Over

Tuesday, September 4, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.
16

Tuesday, September 4, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.
16

SPARC T1 (2005)
8 x 4 = 32

Tuesday, September 4, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.
16

SPARC T1 (2005)
8 x 4 = 32

SPARC T2 (2007)
8 x 8 = 64

Tuesday, September 4, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.
16

SPARC T1 (2005)
8 x 4 = 32

SPARC T2 (2007)
8 x 8 = 64

SPARC T3 (2011)
16 x 8 = 128

Tuesday, September 4, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.
17

Big Disclaimer

The syntax used in the
following slides may

change

Caveat emptor

Tuesday, September 4, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.
18

class Student {
 String name;
 int gradYear;
 double score;
}

Collection<Student> students = ...;

Tuesday, September 4, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.
19

Collection<Student> students = ...;

double max = Double.MIN_VALUE;

for (Student s : students) {
 if (s.gradYear == 2011)
 max = Math.max(max, s.score);
}

Tuesday, September 4, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.
20

Collection<Student> students = ...;

double max = Double.MIN_VALUE;

for (Student s : students) {
 if (s.gradYear == 2011)
 max = Math.max(max, s.score);
}

Tuesday, September 4, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.
21

Collection<Student> students = ...;

max = students.filter(new Predicate<Student>() {
 public boolean op(Student s) {
 return s.gradYear == 2011;
 }
 }).map(new Extractor<Student, Double>() {
 public Double extract(Student s) {
 return s.score;
 }
 }).reduce(0.0, new Reducer<Double, Double>() {
 public Double reduce(Double max, Double score) {
 return Math.max(max, score);
 }
 });

Tuesday, September 4, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.
22

Inner Classes Are Imperfect Closures

• Bulky syntax
• Unable to capture non-final local variables
• Transparency issues

• Meaning of return, break, continue, this
• No non-local control flow operators

Tuesday, September 4, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.
23

Single Abstract Method (SAM) Types

• Lots of examples in the Java APIs
• Runnable, Callable, EventHandler, Comparator

• Noise:Work ratio is 5:1
• Lambda expressions grow out of the idea of making

callback objects easier

foo.doSomething(new CallbackHandler() {
 public void callback(Context c) {
 System.out.println(c.v());
 }
});

Tuesday, September 4, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.
24

Tuesday, September 4, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.
24

Collection<Student> students = ...;

max = students.filter((Student s) -> s.gradYear == 2011)
 .map((Student s) -> s.score)

Tuesday, September 4, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.
24

Collection<Student> students = ...;

max = students.filter((Student s) -> s.gradYear == 2011)
 .map((Student s) -> s.score)
 .reduce(0.0,
 (Double max, Double score) ->
 Math.max(max, score));

max = students.filter(s -> s.gradYear == 2011)

Tuesday, September 4, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.
24

Collection<Student> students = ...;

max = students.filter((Student s) -> s.gradYear == 2011)
 .map((Student s) -> s.score)
 .reduce(0.0,
 (Double max, Double score) ->
 Math.max(max, score));

max = students.filter(s -> s.gradYear == 2011)
 .map(s -> s.score)

Tuesday, September 4, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.
24

Collection<Student> students = ...;

max = students.filter((Student s) -> s.gradYear == 2011)
 .map((Student s) -> s.score)
 .reduce(0.0,
 (Double max, Double score) ->
 Math.max(max, score));

max = students.filter(s -> s.gradYear == 2011)
 .map(s -> s.score)
 .reduce(0.0, Math::max);

Tuesday, September 4, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.
24

Collection<Student> students = ...;

max = students.filter((Student s) -> s.gradYear == 2011)
 .map((Student s) -> s.score)
 .reduce(0.0,
 (Double max, Double score) ->
 Math.max(max, score));

max = students.filter(s -> s.gradYear == 2011)
 .map(s -> s.score)
 .reduce(0.0, Math::max);

max = students.parallel()

Tuesday, September 4, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.
24

Collection<Student> students = ...;

max = students.filter((Student s) -> s.gradYear == 2011)
 .map((Student s) -> s.score)
 .reduce(0.0,
 (Double max, Double score) ->
 Math.max(max, score));

max = students.filter(s -> s.gradYear == 2011)
 .map(s -> s.score)
 .reduce(0.0, Math::max);

max = students.parallel()
 .filter(s -> s.gradYear == 2011)

Tuesday, September 4, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.
24

Collection<Student> students = ...;

max = students.filter((Student s) -> s.gradYear == 2011)
 .map((Student s) -> s.score)
 .reduce(0.0,
 (Double max, Double score) ->
 Math.max(max, score));

max = students.filter(s -> s.gradYear == 2011)
 .map(s -> s.score)
 .reduce(0.0, Math::max);

max = students.parallel()
 .filter(s -> s.gradYear == 2011)
 .map(s -> s.score)

Tuesday, September 4, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.
24

Collection<Student> students = ...;

max = students.filter((Student s) -> s.gradYear == 2011)
 .map((Student s) -> s.score)
 .reduce(0.0,
 (Double max, Double score) ->
 Math.max(max, score));

max = students.filter(s -> s.gradYear == 2011)
 .map(s -> s.score)
 .reduce(0.0, Math::max);

max = students.parallel()
 .filter(s -> s.gradYear == 2011)
 .map(s -> s.score)
 .reduce(0.0, Math::max);

Tuesday, September 4, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.
24

Collection<Student> students = ...;

max = students.filter((Student s) -> s.gradYear == 2011)
 .map((Student s) -> s.score)
 .reduce(0.0,
 (Double max, Double score) ->
 Math.max(max, score));

max = students.filter(s -> s.gradYear == 2011)
 .map(s -> s.score)
 .reduce(0.0, Math::max);

max = students.parallel()
 .filter(s -> s.gradYear == 2011)
 .map(s -> s.score)
 .reduce(0.0, Math::max);

Tuesday, September 4, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.
24

Collection<Student> students = ...;

max = students.filter((Student s) -> s.gradYear == 2011)
 .map((Student s) -> s.score)
 .reduce(0.0,
 (Double max, Double score) ->
 Math.max(max, score));

max = students.filter(s -> s.gradYear == 2011)
 .map(s -> s.score)
 .reduce(0.0, Math::max);

max = students.parallel()
 .filter(s -> s.gradYear == 2011)
 .map(s -> s.score)
 .reduce(0.0, Math::max);

Tuesday, September 4, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.
25

Collection<Student> students = ...;

double max = // Lambda expressions
 students.filter(Students s -> s.gradYear == 2010})
 .map(Students s -> s.score })
 .reduce(0.0, Math::max);

Tuesday, September 4, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.
25

Collection<Student> students = ...;

double max = // Lambda expressions
 students.filter(Students s -> s.gradYear == 2010})
 .map(Students s -> s.score })
 .reduce(0.0, Math::max);

interface Collection<T> {
 int add(T t);
 int size();
 void clear();
 ...

Tuesday, September 4, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.
25

Collection<Student> students = ...;

double max = // Lambda expressions
 students.filter(Students s -> s.gradYear == 2010})
 .map(Students s -> s.score })
 .reduce(0.0, Math::max);

interface Collection<T> {
 int add(T t);
 int size();
 void clear();
 ...
}

Tuesday, September 4, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.
26

How to extend an interface in Java SE 8

public interface Set<T> extends Collection<T>
{

 public int size();

 ... // The rest of the existing Set methods

 public extension T reduce(Reducer<T> r)
 default Collections.<T>setReducer;
}

tells us this
method

extends the
interface

Implementation to use if none
exists for the implementing class

Tuesday, September 4, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.
26

How to extend an interface in Java SE 8

public interface Set<T> extends Collection<T>
{

 public int size();

 ... // The rest of the existing Set methods

 public extension T reduce(Reducer<T> r)
 default Collections.<T>setReducer;
}

tells us this
method

extends the
interface

Implementation to use if none
exists for the implementing class

Tuesday, September 4, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.
27

Collection<Student> students = ...;

double max = // Lambda expressions
 students.filter(Students s -> s.gradYear == 2010)
 .map(Students s -> s.score)
 . reduce(0.0, Math#max);

interface Collection<T> { // Default methods
 extension Collection<E> filter(Predicate<T> p)
 default Collections.<T>filter;

 extension <V> Collection<V> map(Extractor<T,V> e)
 default Collections.<T>map;

 extension <V> V reduce()
 default Collections.<V>reduce;
}

Tuesday, September 4, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.
28

Tuesday, September 4, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.
29

Tuesday, September 4, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.
30

Tuesday, September 4, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.
31

$ java org.planetjdk.aggregator.Main

Tuesday, September 4, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.
32

$ java -cp $APPHOME/lib/jdom-1.0.jar:
$APPHOME/lib/jaxen-1.0.jar:
$APPHOME/lib/saxpath-1.0.jar:
$APPHOME/lib/rome.jar-1.0.jar:
$APPHOME/lib/rome-fetcher-1.0.jar:
$APPHOME/lib/joda-time-1.6.jar:
$APPHOME/lib/tagsoup-1.2.jar:
org.planetjdk.aggregator.Main

Tuesday, September 4, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.
33

$ java -cp $APPHOME/lib/jdom-1.0.jar:
$APPHOME/lib/jaxen-1.0.jar:
$APPHOME/lib/saxpath-1.0.jar:
$APPHOME/lib/rome.jar-1.0.jar:
$APPHOME/lib/rome-fetcher-1.0.jar:
$APPHOME/lib/joda-time-1.6.jar:
$APPHOME/lib/tagsoup-1.2.jar:
org.planetjdk.aggregator.Main

Tuesday, September 4, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.
34

module-info.java
module org.planetjdk.aggregator @ 1.0 {
 requires jdom @ 1.0;
 requires tagsoup @ 1.2;
 requires rome @ 1.0;
 requires rome-fetcher @ 1.0;
 requires joda-time @ 1.6;
 requires jaxp @ 1.4.4;
 class org.openjdk.aggregator.Main;
}

Tuesday, September 4, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.
35

classpath

Tuesday, September 4, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.
35

classpath

Tuesday, September 4, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.
36

Tuesday, September 4, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.
36

// module-info.java

module org.planetjdk.aggregator @ 1.0 {
 requires jdom @ 1.0;
 requires tagsoup @ 1.2;
 requires rome @ 1.0;
 requires rome-fetcher @ 1.0;
 requires joda-time @ 1.6;
 requires jaxp @ 1.4.4;
 class org.openjdk.aggregator.Main;
}

Tuesday, September 4, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.
36

jar

jmod

// module-info.java

module org.planetjdk.aggregator @ 1.0 {
 requires jdom @ 1.0;
 requires tagsoup @ 1.2;
 requires rome @ 1.0;
 requires rome-fetcher @ 1.0;
 requires joda-time @ 1.6;
 requires jaxp @ 1.4.4;
 class org.openjdk.aggregator.Main;
}

Tuesday, September 4, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.
36

deb

rpm

jar

jmod

// module-info.java

module org.planetjdk.aggregator @ 1.0 {
 requires jdom @ 1.0;
 requires tagsoup @ 1.2;
 requires rome @ 1.0;
 requires rome-fetcher @ 1.0;
 requires joda-time @ 1.6;
 requires jaxp @ 1.4.4;
 class org.openjdk.aggregator.Main;
}

Tuesday, September 4, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.
36

deb

rpm

jar

jmod

mvn

// module-info.java

module org.planetjdk.aggregator @ 1.0 {
 requires jdom @ 1.0;
 requires tagsoup @ 1.2;
 requires rome @ 1.0;
 requires rome-fetcher @ 1.0;
 requires joda-time @ 1.6;
 requires jaxp @ 1.4.4;
 class org.openjdk.aggregator.Main;
}

Tuesday, September 4, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.
37

Tuesday, September 4, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.
38

JDK 8 – Proposed Content

Tuesday, September 4, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.
39

Additional Disclaimers

• Some ideas for the Java Platform are shown on the
following slides

• Large R&D effort required
• Content and timing highly speculative
• Some things will turn out to be bad ideas
• New ideas will be added
• Java’s future is bright (in our humble opinion)!

Tuesday, September 4, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.
40

Java SE 9 (and beyond…)

Tuesday, September 4, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.
41

Vision: Interoperability

• Improved support for non-Java languages
• Invokedynamic (done)
• Java/JavaScript interop (in progress – JDK 8)
• Meta-object protocol (JDK 9)
• Long list of JVM optimizations (JDK 9+)

• Java/Native
• Calls between Java and Native without JNI boilerplate (JDK 9)

Tuesday, September 4, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.
42

Vision: Cloud

• Multi-tenancy (JDK 8+)
• Improved sharing between JVMs in same OS
• Per-thread/threadgroup resource tracking/management

• Hypervisor aware JVM (JDK 9+)
• Co-operative memory page sharing
• Co-operative lifecycle, migration

Tuesday, September 4, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.
43

Vision: Language Features

• Large data support (JDK 9)
• Large arrays (64 bit support)

• Unified type system (JDK 10+)
• No more primitives, make everything objects

• Other type reification (JDK 10+)
• True generics
• Function types

• Data structure optimizations (JDK 10+)
• Structs, multi-dimensional arrays, etc
• Close last(?) performance gap to low-level languages

Tuesday, September 4, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.
44

Vision: Integration

• Modern device support (JDK 8+)
• Multitouch (JDK 8)
• Location (JDK 8)
• Sensors – compass, accelerometer, temperature, pressure, ...

(JDK 8+)
• Heterogenous compute models (JDK 9+)

• Java language support for GPU, FPGA, offload engines,
remote PL/SQL...

Tuesday, September 4, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.
45

The Path Forward

• Open development
• Prototyping and R&D in OpenJDK
• Cooperate with partners, academia, greater community

• Work on next JDK, future features in parallel
• 2-year cycle for Java SE releases

Tuesday, September 4, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.
46

Conclusions

• The Java platform will continue to evolve
• Java SE 8 will add some nice, big features
• Expect to see more in Java SE 9 and beyond
• Java is not the new Cobol

Tuesday, September 4, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved.
47

Further Information

• Project Lambda
• openjdk.java.net/projects/lambda

• Project Jigsaw
• openjdk.java.net/projects/jigsaw

Tuesday, September 4, 12

Copyright © 2012, Oracle and/or its affiliates. All rights reserved. Insert Informaion Protection Policy Classification from Slide 7
48

Q&A

Tuesday, September 4, 12

Vielen Dank!

Dalibor Topic
ORACLE Deutschland B.V. & Co. KG

	Titel des Vortags – 40pt Untertitel des Vortrags – 18pt
	Vielen Dank!

