E:
Pl
3.— 6.September2012 |- H H H r t : l m u S Wissenstransfer
in Niirnberg H par excellence

Darf's ein wenig grofier sein?

Architekturmuster fiir hochskalierbare Systeme

Uwe Friedrichsen

codecentric AG

Name: Uwe Friedrichsen

Berufserfahrung: Relativ vielfaltig und lang

Schwerpunkte:

— Teams, Projekte und Systeme zum Erfolg
fuhren — mit einem speziellen Fokus auf
Architektur und Agilitat

— Ganzheitliches Denken, Ideen und Konzepte
verknupfen, Leute zum Nachdenken bringen

— Neue Konzepte & Technologien

Position: CTO bei codecentric AG

AGENDA

Basics of scalability
Dimensions of scalability
Design for high scalability
Choose the right tool
More stuff ...

summary

codecentric AG 03.09.2012 3

Strive for olmplicity *

The system should be made as simple as possible (- but no simpler)

Be statele ‘
o

J o

N
:

3 W "

ST RN
o’ ’ Y
7 .1

’

.

AGENDA

Basics of scalability
Dimensions of scalability
Design for high scalability
Choose the right tool
More stuff ...

summary

codecentric AG 03.09.2012 9

DIMENSIONS OF SCALABILITY

Splitting
(by Function
or Resource)

A
Starting point

(one monolithic
architecture)

Replication ———>

v

A

Near infinite scalability

Sharding

Source: [1]

03.08.2012 10

REPLICATION

When to use
Scaling of transactions, not data
High read to write ratio
How to implement
Clone services and distribute calls via load balancer
Use replication features of infrastructure components
(database, app-server)
Related Concepts
Load balancer & shared nothing units
Load balancer & stateless nodes & scalable storage
Master slave replication
Masterless replication
Tradeoffs
Doesn't scale well with high write rates
Doesn't work for unpredictable data volumes

codecentric AG

SPLITTING

When to use
Very large data sets of loosely coupled data
Large complex systems with loosely coupled functionality
How to implement
Split up by noun (data) or verb (function)
Best implemented with shared nothing units and/or
anynchronous communication
Related Concepts
Service oriented architecture (SOA)
Resource oriented architecture (ROA)
Pipe & Filter
Tradeoffs
Data and/or functions aren’t always suitable for splitting
No tool support (as for replication or sharding)
Long functional chains make system less reliable

codecentric AG

SHARDING

When to use
Very large data sets of tightly coupled data
Unpredictable data volume, rapidly growing data sets
High write rates
How to implement
Use sharding feature of your database component
Related Concepts
Consistent Hashing
Scatter & gather (MapReduce)
Tradeoffs
Consistency is relaxed (especially for indices)
Simple sharding does not work well for rapidly growing data sets
Expensive in terms of required computing resources

codecentric AG

DIMENSIONS OF SCALABILITY

Splitting
(by Function
or Resource)

A
Starting point

(one monolithic
architecture)

Replication ———>

v

A

Near infinite scalability

Sharding

Source: [1]

03.08.2012 14

AGENDA

Basics of scalability
Dimensions of scalability
Design for high scalability
Choose the right tool
More stuff ...

summary

codecentric AG 03.09.2012 15

-, Relax temporal */:
. constraints .

8

o e
i
0
N
4
)
e
A
o S
-‘;‘A
(O8]

RELAX TEMPORAL CONSTRAINTS

When to use
Distributed data sets and the CAP theorem gets into the way
Availability is more important than immediate consistency
How to implement
Consider carefully your availability and consistency requirements
Use a datastore that supports your requirements
Related Concepts
Quorum
Harvest & Yield
Hinted handoffs
Tradeoffs

BASE consistency, no ACID consistency
Application might need to handle temporal inconsistencies itself

Availability

A

C

Consistency

P

Partition
tolerance

codecentric AG

Why do people insist in ACID transactions

even though the real world i1s always BASE?

CACHE AS CACHE CAN

When to use
Short response times and/or high throughput are important
High read to write ratio

How to implement
Use caches built-in to products currently in use
Insert dedicated cache layers into your architecture
Plan — Do - Check - Act

Related Concepts
Content Delivery Networks
HTTP Caching — Expires and ETag headers
Distributed caches

Tradeoffs

Caches may become stale
Balance between response time and additional resources

codecentric AG

Keep dynamic data closer‘ to the compute
and static data closer to the end-user

DYNAMIC AND STATIC DATA

When to use
Optimized response times with large heterogeneous data sets
Network bandwidth and/or transfer costs are an issue

How to implement
Analyze your data and identify static and dynamic portions
Store dynamic data on same nodes where processing logic is
Move processing logic to the data storage
Use frontend caches for static data
Related Concepts
Shared nothing
Scatter & gather
Content Delivery Networks
HTTP Caching — Expires and ETag headers
Tradeoffs
Must be implemented explicitly

codecentric AG

AGENDA

Basics of scalability
Dimensions of scalability
Design for high scalability
Choose the right tool
More stuff ...

summary

codecentric AG 03.09.2012 23

STORAGE TECHNOLOGY DECISION CUBE

NoSQL solution

(medium cost)

| \

\\

Multiple RDBMS

V4 (very high cost)

File system | \
(low cost) :
™ |
[
High |
|
|
|
|
|
i
Rate of |
growth |
|
| Monolithic RDBMS
| v
5 S S PR
7 High
- Relationships
Low | .~
Low
Low) . High
Read/write conflict J
Source: [1]
codecentric AG 03.08.2012

STORAGE TECHNOLOGIES

File system
Easy to use, scales extremely well
Can handle large entries well
Poor support for relations and concurrency

NoSQL

Fills the gap between file systems and RDBMS

Very diverse technologies: KV, Wide column, Document, Graph
Different strategies w.r.t. CAP and scalability support
Searching is often an issue

Relatively young technology (stability, tools, documentation)

RDBMS

Very strong at relations and concurrency handling
Don't scale well beyond a certain boundary
Mature technology, very good tool support

codecentric AG

STORAGE TECHNOLOGY DECISION CUBE

NoSQL solution

(medium cost)

| \

\\

Multiple RDBMS

V4 (very high cost)

File system | \
(low cost) :
™ |
[
High |
|
|
|
|
|
i
Rate of |
growth |
|
| Monolithic RDBMS
| v
5 S S PR
7 High
- Relationsships
Low | .~
Low
Low) . High
Read/write conflict J
Source: [1]
codecentric AG 03.08.2012

e wary of vendor solutions

= p—— = — g . = . : " = 2 2 R - N
" <R —— - . i : : o ks X - n -

AGENDA

Basics of scalability
Dimensions of scalability
Design for high scalability
Choose the right tool
More stuff ...

summary

codecentric AG 03.09.2012 28

MORE PATTERNS AND PRINCIPLES ...

» | ——
Fault tolerance ~ P
Be prepared for things to crash > ' /
Deal with inconsistencies (;

3

Database handling
Use the right type of locking
Don't use "*" in select statements |
Using web technologies best -~ SR\ X
Unleash the potential of HTTP a \\ ’g
Extreme scalability A - 4
Automation and elasticity 0 ’ ‘
Big disjoint entities with message based communication |
And many more ... | &
Monitoring the system
Designing and learning recommendations
Never down system

r

codecentric AG

MORE TO READ ...

[1]

[2]

[3]

[4]

[5]

[6]

[7]

Michael T. Fisher, Martin L. Abbott,
Scalability Rules: 50 Principles for Scaling Web Sites,
Addison-Wesley Longman, 207171

Theo Schlossnagle, Scalable Internet Architectures,
Sams, 2005

Jinesh Varia, Architecting for the Cloud: Best Practices,

Amazon Web Services 2010

Jinesh Varia, Cloud Architectures,
Amazon Web Services 2008

Pat Helland, Life beyond Distributed Transactions,
3rd Conference on Innovative DataSystems Research
(CIDR) 2007

http: / /highscalability.com/

http: //www.slideshare.net/jboner/
scalability-availability-stability-patterns

codecentric AG

AGENDA

Basics of scalability
Dimensions of scalability
Design for high scalability
Choose the right tool
More stuff ...

Summary

codecentric AG 03.09.2012 31

Scalability 1s primarily a design
Issue, not a tool or product Issue

The core principles of scalabllity:
simplicity, scale out, share nothing,
asynchronous communication

The three dimensions of scaling

The different storage choices

Uwe Friedrichsen
CTO

codecentric AG
Merscheider Stralle 1
42699 Solingen

uwe.friedrichsen@codecentric.de
tel +49 (0) 212 . 23 36 28 10
fax +49 (0) 212 . 23 36 28 79
mobil +49 (0] 160 . 90 62 66 00

www.codecentric.de
blog.codecentric.de
www. meettheexperts.de

DISKUSSION & FRAGEN

