
Wolkenschlösser
Architekturen für die Cloud

Eberhard Wolff
Architecture and Technology Manager, adesso AG

Herbstcampus 2012 – Wolkenschlösser - Architekturen für die Cloud 2

About me

• Eberhard Wolff
• Architecture & Technology Manager at adesso
• adesso is a leading IT consultancy in Germany
• Speaker
• Author (e.g. first German Spring book)
• Blog: http://ewolff.com
• Twitter: @ewolff
• http://slideshare.com/ewolff
• eberhard.wolff@adesso.de

Herbstcampus 2012 – Wolkenschlösser - Architekturen für die Cloud 3

How Is Cloud Different?

Herbstcampus 2012 – Wolkenschlösser - Architekturen für die Cloud 4

How Is Cloud Different?

Herbstcampus 2012 – Wolkenschlösser - Architekturen für die Cloud 5

Herbstcampus 2012 – Wolkenschlösser - Architekturen für die Cloud 6

How is Cloud Different?

• Can easily and cheaply add new resources
•  Prefer starting new instances over highly available instances
•  Prefer adding instances over using a more powerful instance
• Might end up with lots of instances

• Prefer dealing with failure over providing a highly
available network

• Lots of non powerful instances with unreliable network
• How can you end up with a reliable system then?

Herbstcampus 2012 – Wolkenschlösser - Architekturen für die Cloud 7

Chaos Monkey

• Test tool for Amazon cloud
• Part of the Simian Army project
• Originally developed by Netflix

•  Very large Amazon customer
•  Streaming TV provider

• Chaos Monkey randomly terminates systems in
your Amazon Cloud

Herbstcampus 2012 – Wolkenschlösser - Architekturen für die Cloud 8

True High Availability

• Do not rely on the availability of your hardware!
• Therefore: Cloud architectures offer better

availability

• Things to consider:
• How dependent are your non-cloud systems on

individual servers?

Herbstcampus 2012 – Wolkenschlösser - Architekturen für die Cloud 9

Enter Spring Biking!

• The revolutionary web site to create
customized bikes!

• We got a few million € Venture Capital

• We need...
•  Catalog of all Mountain Bike parts and bikes
•  System to configure custom Mountain Bikes
•  Order system

• Cloud good idea
•  No CapEx
•  Rapid elasticity -> easy to grow

• Focusing on German market

Herbstcampus 2012 – Wolkenschlösser - Architekturen für die Cloud 10

Spring Biking: Architecture

• Standard Enterprise
Architecture

• Relational database

Database

Application
(Order,

Configuration,
Catalog)

Herbstcampus 2012 – Wolkenschlösser - Architekturen für die Cloud 11

Spring Biking: Architecture

• Standard Enterprise
Architecture

• Relational database

Database

Application
(Order,

Configuration,
Catalog)

Wait, didn’t you
say it should run
in the Cloud?

Herbstcampus 2012 – Wolkenschlösser - Architekturen für die Cloud 12

How Spring Biking Deals with Cloud
Challenges

• No state on the web tier
•  i.e. no session
•  State stored in database

• No CAP issues on the web tier –
no data

Application
(Order,

Configuration,
Catalog)

Herbstcampus 2012 – Wolkenschlösser - Architekturen für die Cloud 13

How Spring Biking Deals with Cloud
Challenges

• Easy to automatically start new
instances if load increases

• Every PaaS should deal with elastic
scaling

• Example: Amazon Elastic Beanstalk
•  Takes a standard Java WAR
•  Deploys it
•  Add elastic scaling

• Could build something similar yourself
with an IaaS
•  Automated deployment
•  Elastic scaling and load balancing available

from Amazon IaaS offerings

Application
(Order,

Configuration,
Catalog)

Herbstcampus 2012 – Wolkenschlösser - Architekturen für die Cloud 14

How Spring Biking Deals with Cloud
Challenges

• Relational database fine for now
•  Example: Amazon RDS (Relational Database Service)
• MySQL and Oracle
• MySQL: Multi data center replication
•  Can deal with failure of one data center

Database

Herbstcampus 2012 – Wolkenschlösser - Architekturen für die Cloud 15

Benefits for the Development Process

• Trivial to get a new version out
• Easy to create a production like

environment for test or staging
•  Take snapshot from production database
•  Set up new database with snapshot
•  Create a new environment with a different release

of the software
•  Automated for production
•  Production-like sizing acceptable: You pay by the

hour

• Some details might make it hard (e.g. 3rd
party systems)

Herbstcampus 2012 – Wolkenschlösser - Architekturen für die Cloud 16

Benefits for the Development Process

• This can also be done using Virtualization /
Private Clouds!

• Can be more important than cost reduction
• Business Agility is a major driver for

(private) Cloud!
• …and the next step for virtualization.

Herbstcampus 2012 – Wolkenschlösser - Architekturen für die Cloud 17

Next step: Spring Biking Goes Global!

• Global demand for bikes is on all time high!
• We need to globalize the offering
• A central RDBMS for the global system is not

acceptable
•  Amazon RDS offers databases for a Region (e.g. US-East,

EU-West)
•  Need a different solution for a global system

• Just an example
• Traditional Enterprise architectures scales to a

certain limit

• We are not all going to build Twitter or Facebook

Herbstcampus 2012 – Wolkenschlösser - Architekturen für die Cloud 18

CAP Theorem

• Consistency
•  All nodes see the same data

• Availability
•  Node failure do not prevent survivors from operating

• Partition Tolerance
•  System continues to operate despite arbitrary message loss

• Can at max have two
• Or rather: If network fail – choose A or P.

C

P A

Herbstcampus 2012 – Wolkenschlösser - Architekturen für die Cloud 19

Consistency

Partition
Tolerance

Availability

RDBMS

2 Phase
Commit

DNS Replication

Quorum

CAP Theorem

Herbstcampus 2012 – Wolkenschlösser - Architekturen für die Cloud 20

CAP Theorem in the Cloud

• Need A – Availability
•  A system that is not available is usually the worst thing
•  Shutting down nodes is no option

• Need P – Partition Tolerance
•  Network is not under your control
•  Lots of nodes -> partitioning even more likely

• No chance for C – Consistency
•  Because we can’t

• CA used to be OK with a highly available network
and a few nodes

C

P A

Herbstcampus 2012 – Wolkenschlösser - Architekturen für die Cloud 21

BASE

• Basically Available Soft state Eventually
consistent

• I.e. trade consistency for availability
• Eventually consistent

•  If no updates are sent for a while all previous updates
will eventually propagate through the system

•  Then all replicas are consistent
•  Can deal with network partitioning: Message will be

transferred later
• All replicas are always available

• Pun concerning ACID…
• Not the same C, however!

Herbstcampus 2012 – Wolkenschlösser - Architekturen für die Cloud 22

BASE in Spring Biking

Database

Application

Database

Application

Database

Application

EU-West US-East Asia-Pacific

Changes to catalog

Eventually propagated

Herbstcampus 2012 – Wolkenschlösser - Architekturen für die Cloud 23

Network Partitioning / Inconsistency

Database

Application

Database

Application

Database

Application

EU-West US-East Asia-Pacific

Network
Partitioning

Inconsistent
data
Eventually
data is
consistent

Herbstcampus 2012 – Wolkenschlösser - Architekturen für die Cloud 24

Implementing BASE Using Event
Sourcing

• Do it yourself using a messaging system
•  JMS (ActiveMQ …)
•  RabbitMQ
•  Amazon Simple Queue Service (SQS)
•  Amazon Simple Notification Server (SNS)
•  Easy to duplicate state on nodes
•  Fail safe: Message will eventually be transferred
• …and high latency is acceptable

Event Domain
Model

Herbstcampus 2012 – Wolkenschlösser - Architekturen für die Cloud 25

Implementing BASE Using Event
Sourcing

• Other reason to use Event Sourcing
•  Capture all changes to an application state as a sequence of

events
•  Originates in Domain Driven Design
•  Also used as a log of actions (to replay, reverse etc)

• Might end up with an Event-driven Architecture
• Might add Complex Event Processing etc.

Event Domain
Model

Herbstcampus 2012 – Wolkenschlösser - Architekturen für die Cloud 26

Implementing BASE Using NoSQL

• Some NoSQL databases
include replication

• Example: MongoDB
•  Replication between nodes
• Master-slave replication
• Master automatically elected
•  Easy to set up
•  All nodes have the same data
•  Sharding also possible

Herbstcampus 2012 – Wolkenschlösser - Architekturen für die Cloud 27

More Sophisticated

• Writes must be acknowledge
by N nodes

• …or nodes in each data center
• Data is read from master
• …or also slaves are OK

• Replication done
automatically

• Clustering built in
• Tuneable CAP

Herbstcampus 2012 – Wolkenschlösser - Architekturen für die Cloud 28

Different Parts Require Different
Architecture

• So far: Catalog
•  Data must be available on each node
•  Slight inconsistencies are OK
•  i.e. new item added to catalog

• Stock information should be consistent
•  So customers are not disappointed
• Might use caching-like structure

• Orders are immediately send to the back end
•  No local storage at all

• A lot more catalog browsing than ordering

Application

Catalog

Order

Herbstcampus 2012 – Wolkenschlösser - Architekturen für die Cloud 29
04.09.12 29

Database

Catalog

Updates
Stock
Master

Stock
Cache Database

Catalog

Stock
Cache

Order

More load on catalog ->
More instances

Less load on order ->
Less instances

No local
data
All send to
backend

Herbstcampus 2012 – Wolkenschlösser - Architekturen für die Cloud 30

Applications vs. Services

• Applications are decomposed into services

• Benefits
•  Unit of failures can be aligned to services
•  And: Service failure can be dealt with
•  Can scale services independently
•  Can use infrastructure specifically designed for the servers

• Remember the First Law of Distributed Objects:
Don’t Distribute Your Objects!

• E.g. provide HTML pages

• Fits DevOps approach: Align operations to services

Herbstcampus 2012 – Wolkenschlösser - Architekturen für die Cloud 31

Application vs. Services

• Very different from centralized web server, db
server etc

• Instead: to each service its own environment

• Very different from monolithic EAR style
deployment

• Smaller services and deployment models

• So: Enterprise Java will need to adjust

Herbstcampus 2012 – Wolkenschlösser - Architekturen für die Cloud 32

Handling Log Files

• Business requirements
•  Need to measure hits on web pages
•  Need to measure hits for

individual products etc.
• Sounds like a batch

•  File in, statistics out

• But: Data is globally distributed
• Lots of data i.e. cannot be collected at

a central place
• Data should stay where it is
• Some nodes might be offline or not available
• Prefer incomplete answer over no answer at all

Herbstcampus 2012 – Wolkenschlösser - Architekturen für die Cloud 33

More Than CAP

• CAP Theorem again
• Consistency, Availability, Network Partitioning
• You can only have two

• But: We want Availability
• …and a flexible trade off between Consistency and

Network Partitioning
• Like Casssandra

• I.e. CAP theorem is not the proper way to think
about this

C

P A

Herbstcampus 2012 – Wolkenschlösser - Architekturen für die Cloud 34

Harvest and Yield

• Yield: Probability of completing a request
• Harvest: Fraction of data represented in the result

• Harvest and Yield vs. CAP
• Yield = 100% -> Availability
• Harvest = 100% -> Consistency

• Can also be used to execute some logic on all data
• …and wait until enough harvest is there to answer a

query

• So: Send out a query to all log files
• …and collect the results

Herbstcampus 2012 – Wolkenschlösser - Architekturen für die Cloud 35

Map / Reduce

• Map: Apply a function to all data
•  Emit (item name, 1) for each log file line

• Master sorts by item name
• Reduce: Add all (item name, 1) to the total score

• Map can be done on any node
• Master collects data

Map Map

Reduce

Herbstcampus 2012 – Wolkenschlösser - Architekturen für die Cloud 36

Another Case Study

• Financials

• Build a Highly Available, High Throughput System,
Low Latency System on Standard Hardware!

• Just like Google and Amazon

• Driver: Standard infrastructure – cheap and stable
• Driver: Even more availability, throughput,

scalability and lower latency

• You will need to consider CAP, BASE, Harvest &
Yield etc.

• Very likely with virtualization / Private Cloud

Herbstcampus 2012 – Wolkenschlösser - Architekturen für die Cloud 37

Another Case Study

• Random Project

• Make deployment easier!
• Make it easy to create test environment!
• Driver: Business Agility and Developer Productivity
• Will need to use automated installation + IaaS or

PaaS
• Might be in a Public or Private Cloud

• Example: adesso Mobile Solutions

Herbstcampus 2012 – Wolkenschlösser - Architekturen für die Cloud 38

Conclusion

• Better and cheaper high availability
 – by welcoming hardware failure

• Better and cheapter scalability
 – by horizontal scaling

• Current PaaS run Enterprise applications unchanged

• Keep in mind:
• CAP: Consistency, Availability, Partition Tolerance
• You will need to relax C to get A and P

• Architecture will prefer small services
• …as units of failure

Vielen Dank!

Eberhard Wolff
Architecture and Technology Manager, adesso AG

