
Stumbling Blocks and Stepping Stones auf dem Weg zum

Software Transactional Memory

Christoph von Praun
Geoorg-Simon-Ohm Hochschule, Nürnberg

Herbstcampus 2009: Software Transactional Memory

[Herlihy&Shavit’08]

Maurice Herlihy, Nir Shavit:
“The Art of Multiprocessor Programming”,
Morgan Kaufmann, 2008.

2

Herbstcampus 2009: Software Transactional Memory 3

Moore’s Law

Clock speed
flattening
sharply

Transistor
count still

rising

Source: [Peyton-Jones]

Herbstcampus 2009: Software Transactional Memory 4

Instruction-level
Parallelism

Thread-level
Parallelism

Chip-Multiprocessors
(CMPs)

Pipelined and
superscalar
architectures

Source: [Amarasinghe’07]

VLSI Generations

1971 1980 1990 2000 2008

Herbstcampus 2009: Software Transactional Memory

of cores

1

2

4

8

16

32

64

128

256

512

Source: [Amarasinghe’07]

Multicore Architectures

5
!" #$%&'()*+(,""-(.)/+012$(34546(*54047869:;<(.)/$

1985 199019801970 1975 1995 2000 2005

Raw

Power4
Opteron

Power6

Niagara

Yonah
PExtreme

Tanglewood

Cell

Intel

Tflops

Xbox360

Cavium

Octeon

Raza

XLR

PA-8800

Cisco

CSR-1

Picochip

PC102

Boardcom 1480

20??

=(12

>10;7

%

,

?

&

%#

@,

#?

%,&

,!#

!%,

Opteron 4P

Xeon MP

Ambric

AM2045

Multicores

4004

8008

80868080 286 386 486 Pentium P2 P3
P4
Itanium

Itanium 2Athlon

1970 1980 1990 2000 2005
year

Herbstcampus 2009: Software Transactional Memory

Traditional Scaling

6

User code

Traditional
Uniprocessor

Speedup
1.8x

7x

3.6x

Time: Moore’s Law

Source: [Herlihy&Shavit’08]

Herbstcampus 2009: Software Transactional Memory

Multicore Scaling Process

7

User code

Multicore

Speedup
1.8x

7x
3.6x

Unfortunately, not so simple…

Source: [Herlihy&Shavit’08]

Herbstcampus 2009: Software Transactional Memory

Real-World Scaling Process

8

1.8x 2x 2.9x

User code

Multicore

Speedup

Parallelization and synchronization
require great care…

Source: [Herlihy&Shavit’08]

Herbstcampus 2009: Software Transactional Memory 9

Why do we care?

• Time no longer cures software bloat
• When you double your path length

– You can’t just wait 6 months
– Your software must somehow exploit

twice as much concurrency

Source: [Herlihy&Shavit’08]

Herbstcampus 2009: Software Transactional Memory 10

Multicore

Implicitly parallel:
Parallelization done

with tools or libraries

Data-parallel:
Operate in
parallel on
bulk data

Parallel Programming

Task-parallel:
Explicit threads

communication and
synchronization

Explicitly parallel:
Parallelization done

by programmer

Herbstcampus 2009: Software Transactional Memory 11

Multicore

Implicitly parallel:
Parallelization done

with tools or libraries

Data-parallel:
Operate in
parallel on
bulk data

Parallel Programming

Task-parallel:
Explicit threads

communication and
synchronization

Explicitly parallel:
Parallelization done

by programmer

This talk

Herbstcampus 2009: Software Transactional Memory

• Problems with Locking
• TM Intro
• Language Integration
• Empirical Studies about TM
• Design Space for TM Semantics
• Design Space for TM Implementations
• STM Performance

12

Outline

Herbstcampus 2009: Software Transactional Memory 13

State of the Art in Task Parallel
Programming

• Today’s software
– Non-scalable methodologies (Locks)
– State of the art has not much changed in 30

years

• Today’s hardware
– Poor support for scalable synchronization

• Cannot exploit cheap (hardware) threads

Source: [Herlihy&Shavit’08]Source: [Herlihy&Shavit’08]

Herbstcampus 2009: Software Transactional Memory 14

Why Locking Doesn’t Scale

• Not Robust
• Relies on Conventions
• Hard to Use

– Conservative
– Deadlocks
– Lost wake-ups

• Not Composable

Source: [Herlihy&Shavit’08]

Herbstcampus 2009: Software Transactional Memory 15

Locks are not Robust

If a thread holding
a lock is delayed …

... other threads
may not make
progress either

Source: [Herlihy&Shavit’08]

Herbstcampus 2009: Software Transactional Memory 16

Why Locking Doesn’t Scale

• Not Robust
• Relies on conventions
• Hard to Use

– Conservative
– Deadlocks
– Lost wake-ups

• Not Composable

Source: [Herlihy&Shavit’08]

Herbstcampus 2009: Software Transactional Memory 17

Locking Relies on Conventions

• Relation between
– Lock bit and object bits
– Exists only in programmer’s mind

• Order in which locks are
taken

/*
 * When a locked buffer is visible to the I/O layer
 * BH_Launder is set. This means before unlocking
 * we must clear BH_Launder,mb() on alpha and then
 * clear BH_Lock, so no reader can see BH_Launder set
 * on an unlocked buffer and then risk to deadlock.
 */

Actual comment
from Linux Kernel

Source: [Bradley Kuszmaul]

Herbstcampus 2009: Software Transactional Memory 18

Why Locking Doesn’t Scale

• Not Robust
• Relies on conventions
• Hard to Use

– Conservative
– Deadlocks
– Lost wake-ups

• Not Composable

Source: [Herlihy&Shavit’08]

Herbstcampus 2009: Software Transactional Memory 19

Programming Challenge

enq(x) deq(y)Double-ended queue

No interference if
ends “far enough”

apart

Source: [Herlihy&Shavit’08]

Herbstcampus 2009: Software Transactional Memory 20

Programming Challenge

enq(x) deq(y)Double-ended queue

Interference if ends
“close enough”

together

Source: [Herlihy&Shavit’08]

Herbstcampus 2009: Software Transactional Memory 21

Programming Challenge

deq() deq()Double-ended queue

Make sure suspended
dequeuers awake as

needed

Source: [Herlihy&Shavit’08]

Herbstcampus 2009: Software Transactional Memory 22

You Try It …

• One lock?
– Too conservative

• Locks at each end?
– Deadlock

• Without locks, solely using atomic
operations?

Source: [Herlihy&Shavit’08]

Herbstcampus 2009: Software Transactional Memory 23

Actual Solution

• [Michael&Scott’96]
• What good is a methodology (locks,

fine-grain atomic operations) where
solutions to such elementary problems
are hard enough to be publishable?

Source: [Herlihy&Shavit’08]

Herbstcampus 2009: Software Transactional Memory 24

Why Locking Doesn’t Scale

• Not Robust
• Relies on conventions
• Hard to Use

– Conservative
– Deadlocks
– Lost wake-ups

• Not Composable

Source: [Herlihy&Shavit’08]

Herbstcampus 2009: Software Transactional Memory 25

Locks do not compose

add(T1, item)

delete(T1, item)

add(T2, item) item item

Move from T1 to T2

Must lock T2

before deleting
from T1

lock T2lock T2lock T1lock T1

lock T1lock T1

item

Exposing lock internals breaks abstraction.

Hashtable Must lock T1

before adding
item

Source: [Herlihy&Shavit’08]

Herbstcampus 2009: Software Transactional Memory

• Problems with Locking
• TM Intro
• Language Integration
• Empirical Studies about TM
• Design Space for TM Semantics
• Design Space for TM Implementations
• STM Performance

26

Outline

Herbstcampus 2009: Software Transactional Memory 27

Double ended queue revisited
public void enq(Item x) {

 QNode q = new QNode(x);

 q.left = this.left;

 this.left.right = q;

 this.left = q;

}

sequential
program

Herbstcampus 2009: Software Transactional Memory

ACID principle from database systems:
• Atomicity: All-or-nothing semantics
• Isolation: Effects of concurrent computations do not

leak into transaction.
28

Double ended queue revisited
public void enq(Item x) {

 atomic {

 QNode q = new QNode(x);

 q.left = this.left;

 this.left.right = q;

 this.left = q;

 }

}

sequential
program

transaction

Herbstcampus 2009: Software Transactional Memory

Possible implementation of atomic

Optimistic concurrency:

• ... read and write operations in <sequential code>
are recorded in thread-local log
–Writes go to log, not to memory
–Reads obtain value from log or memory

• Commit at the end:
– in one atomic step, check validity of prior

reads and update memory
–If commit fails, rerun transaction

29

 atomic { <sequential code> }

Herbstcampus 2009: Software Transactional Memory

atomic is Compositional

Transfer item from one queue to another:

30

public void transfer(Queue q1, Queue q2) {

 atomic {

 Item tmp = q1.deq();

 q2.enq(tmp);

 }

}

Herbstcampus 2009: Software Transactional Memory

• Re-execute when the value of a previously read
variable changes

• No condition variables, no lost wakeups!

31

Conditional Blocking

public Item deq() {

 atomic {

 if (this.left == null)

 retry;

 ...

 }

}

rollback and
re-execute from scratch

Herbstcampus 2009: Software Transactional Memory

• Transaction succeeds only if
–q1 is not empty
–q2 is not full

• No need to rewrite deq() and enq()
• Note: wait() and signal() do not compose

32

Blocking is Compositional
public void transfer(Queue q1, Queue q2) {

 atomic {

 Item tmp = q1.deq();

 q2.enq(tmp);

 }

}

Herbstcampus 2009: Software Transactional Memory

• Problems with Locking
• TM Intro
• Language Integration

– Library and Compiler Support
– Exception Handling
– I/O
– Semantics of Nested Transactions

• Empirical Studies about TM
• Design Space for TM Semantics
• Design Space for TM Implementations
• STM Performance

33

Herbstcampus 2009: Software Transactional Memory 34

We Don’t have Language Support (Yet)

STMs typically implemented as a library
– sometimes with compiler support

…
 a = 5;
 atomic {
 b = a+5;
 }
 c = b;
…

…
 a = 5;
 stmStart();
 temp = stmRead(&a);
 stmWrite(&b, temp +5);
 stmCommit();
 c = b;
…

library calls

Source: [Herlihy&Shavit’08]

Herbstcampus 2009: Software Transactional Memory 35

We Don’t have Language Support (Yet)

• Compiler provides
– syntactic convenience for the programmer
– correctness

• programmer may instrument too few accesses

– optimizations
• programmer may instrument too many accesses

• Still, design and development of an STM
solely based on a library is hard ...

Source: [Herlihy&Shavit’08]

Herbstcampus 2009: Software Transactional Memory 36

Why It’s Hard

• TM is not just a collection of useful
objects and methods

• Effect of transactional synchronization
is pervasive
– How functions are defined
– Control flow: commit & abort
– Exception handling
– Irrevocable actions, I/O

Source: [Herlihy&Shavit’08]

Herbstcampus 2009: Software Transactional Memory

Exceptions

Should uncaught exceptions commit or abort a
transaction?
• Commit: May leave the data structure in

inconsistent state.
• Abort: What about exception object itself, and

transactional state that may be reachable from
exception object?

37

 atomic {
 try {
 ...
 } catch (SomeException e) { ... }
 }

Herbstcampus 2009: Software Transactional Memory

I/O
• atomic blocks require possibility to revoke

operations (rollback)
• Not obvious for I/O:

• Transaction may see x==y due to interleaving
with other transactions

• Such transaction is doomed to roll back and
must not call launchMissiles()

38

 atomic {
 if (x == y)
 launchMissiles();
 }

Herbstcampus 2009: Software Transactional Memory

Transactional Output is OK
1. Output is buffered in transactional shared

memory

2. Separate I/O thread performs “real” output

39

 atomic {
 if (x == y)
 print(txbuffer, “Hello world”);
 }

 while (true)
 atomic {
 char* tmp = txbuffer.get();
 if (tmp) print(tmp)
 else retry;
 }
 }

Herbstcampus 2009: Software Transactional Memory

• Problems with Locking
• TM Intro
• Language Integration
• Empirical Studies about TM

– User Study
– Application Study of Real World Concurrency Bugs

• Design Space for TM Semantics
• Design Space for TM Implementations
• STM Performance

40

Outline

Herbstcampus 2009: Software Transactional Memory

User Study [RossbachEtAl’09]
147 undergraduate students are given simple parallel
programming assignment.
Different techniques should be used for concurrency
control (one big lock, fine-grained locking, TM)

Results:
• TM is much less error-prone than fine-grain

locking
• Newbie programmers have trouble understanding

transactions, though TM is still easier than fine-
grain locks.

41Source: [RossbachEtAl’08]

Herbstcampus 2009: Software Transactional Memory

Study of Real World Concurrency Bugs
[LuEtAl’08]

Study of 105 bugs in 4 randomly chosen very large
open-source programs:

• “TM can help avoid about one third (39%) of the
examined concurrency bugs.”

• “Some (19%) of the examined concurrency bugs
cannot benefit from basic TM designs because of
their bug pattern.”

42Source: [LuEtAl’08]

Herbstcampus 2009: Software Transactional Memory

• Problems with Locking
• TM Intro
• Language Integration
• Empirical Studies about TM
• Design Space for TM Semantics

– Atomicity and Isolation
– Ordering

• Design Space for TM Implementations
• STM Performance

43

Outline

Herbstcampus 2009: Software Transactional Memory

A “Simple” Model of Concurrency
“The behavior of a concurrent program is
 the interleaving of operations executed by
 individual threads”.

Premises:
1. Operations are atomic
2.Threads execute operations in program order
3.Operations are observed in a total global

order compatible with the program order.

44

Herbstcampus 2009: Software Transactional Memory

A “Simple” Model of Concurrency

45

thread1 x.write(1)

initially x, y = 0

y.read(1)

thread2 y.write(1) x.read(1)

x = 1
y = 0

x = 0
y = 0

x = 1
y = 1

x = 1
y = 1

x = 1
y = 1

program order
real time execution order

Herbstcampus 2009: Software Transactional Memory

Reality is different

1. Operations are atomic
Modern processors support atomic read, write
and rmw operation at word-granularity

2.Threads execute operations in program order
3.Operations are observed in a total global

order compatible with the program order.
Compiler and processors re-order individual
operations if data- and control-dependences in
the sequential program permit.

46

Herbstcampus 2009: Software Transactional Memory

Example

47

thread1 x.write(1)

initially x, y = 0

y.read(0)
thread2 y.write(1) x.read(0)

x = 1
y = 0

x = 0
y = 0

x = 1
y = 1

x = 1
y = 0

x = 0
y = 0

Thread 2 violates principle #2 (program order)

program order
real time execution order

Herbstcampus 2009: Software Transactional Memory 48

1. Operations are atomic
Atomic blocks group composite operations.

2.Threads execute operations in program order
Atomic blocks order operations within a
thread.

3.Operations are observed in a total global
order compatible with the program order.
Atomic blocks induce a global synchronization
order.

TM to the Rescue!

Herbstcampus 2009: Software Transactional Memory 49

Unfortunately reality is not as bright when
looking at the details. Two topics:

1. Operations are atomic

2. Threads execute operations in program order
3. Operations are observed in a total global

order compatible with the program order.

Semantics of Atomic Blocks

Atomicity and Isolation
(ACID)

Ordering

Atomicity: Partial effects of a transaction are not
visible to concurrent computations.
Isolation: Effects of concurrent computations do not
leak into a txn.

Herbstcampus 2009: Software Transactional Memory

ACID Revisited

50

Any concurrent computation
• Semantics called strong atomicity
• Ideal, but probably inefficient to

implement in software

Only other transactions
• Semantics called weak atomicity
• Reasonable model for STM

Herbstcampus 2009: Software Transactional Memory

Strong atomicity says: “No!”
• Sequential reasoning inside atomic block
Weak atomicity says: “Yes!”
• Non-local reasoning necessary

51

Thread 1

atomic {

 x = 0;
 if (x == 1)
 y = 1;
}

Thread 2

x = 1;

Can y == 1?

Initially x, y == 0

• Strong vs. weak atomicity is decided by
programming language designers
– high-level memory model
– Details: [GrossmanEtAl’06]

• Caveat: Weak atomicity has many flavors!

Herbstcampus 2009: Software Transactional Memory

Languages need
High-level Memory Models

52

... gives the following guarantees:
1) Inside a transaction, multiple accesses to the

same variable return the same value provided
that no write intervenes.

2) If a variable is written inside an transaction,
subsequent reads in the transaction obtain the
value that was written.

3)An intermediate value, which is overwritten in
the same transaction or a retry is not visible to
other computations.

Herbstcampus 2009: Software Transactional Memory

Strong Atomicity

53

• Weak atomicity gives up one or several
guarantees made by strong atomicity

Herbstcampus 2009: Software Transactional Memory

Flavors of Weak Atomicity

54

Herbstcampus 2009: Software Transactional Memory

1) Inside a transaction, multiple accesses to the same
variable return the same value provided that no write
intervenes.

55

Thread 1

atomic {

 r1 = x;
 r2 = x;
}

Thread 2

x = 1;

Can r1 == 1, r2 == 2? Yes!

Initially x, y == 0
Thread 3

x = 2;

Flavors of Weak Atomicity (1/4)

Herbstcampus 2009: Software Transactional Memory

2) If a variable is written inside an transaction, subsequent
reads in the transaction obtain the value that was written.

56

Thread 1

atomic {

 x = 0;
 if (x == 1)
 y = 1;
}

Thread 2

x = 1;

Can y == 1? Yes!

Initially x, y == 0

Flavors of Weak Atomicity (2/4)

Herbstcampus 2009: Software Transactional Memory

3) An intermediate value, which is overwritten in the same
transaction or a retry is not visible to other computations.

57

Thread 1

atomic {

 x = 1;
 x = 2;
}

Thread 2

r1 = x;

Can r1 == 1? Yes: “Dirty Read”!

Initially x == 0

Flavors of Weak Atomicity (3/4)

Herbstcampus 2009: Software Transactional Memory

3) An intermediate value, which is overwritten in the same
transaction or a retry is not visible to other computations.

58

Thread 1

atomic {

 y = 1;
 if (x == 0)
 retry;
}

Thread 2

r1 = y;

atomic {

 x = 1;

}

Can r1 == 1? Yes: “Speculative dirty read”!

Initially x, y == 0

Flavors of Weak Atomicity (4/4)

Herbstcampus 2009: Software Transactional Memory 59

Thread 1

atomic {

 r = x;
 x = r+1;
}

Thread 2

x = 2;

Can x == 1?

Strong Atomicity: No!
Any flavor of
weak atomicity: No!

Initially x == 0

Atomic Blocks vs. Java Synchronized

Can x == 1?

Yes: “Lost Update”!

Thread 1

synchronized(lock) {

 r = x;
 x = r+1;
}

Thread 2

x = 2;

Accessing the same variable inside and outside a
transaction is used in common programming idioms:
• Thread-safe lazy initialization
• Data handoff

Herbstcampus 2009: Software Transactional Memory

Ordering Revisited

60

Herbstcampus 2009: Software Transactional Memory

Thread-Safe Initialization

61

Thread 1

data = 1;
mfence;
flag = true;

Can r1 != 0 && r2 = 0? No!

Initially flag = false, data = 0;

Thread 2

r1 = flag;

if (r1 == true)

 r2 = data;

Idiom works on architectures with processor consistency
(X86), resp. TSO (Sparc).

Unsynchronized read (nx)Initialization (1x)

Herbstcampus 2009: Software Transactional Memory

Thread-Safe Initialization with
Atomic Block?

62

Thread 1

atomic {

 data = 1;
 flag = true;
}

Can r1 != 0 && r2 = 0?

Initially flag = false, data = 0;

Thread 2

r1 = flag;

if (flag == true)

 r2 = data;

Some programming languages say yes!, i.e. permit
this result (e.g Fortress). Idiom not correct in these
languages!

Herbstcampus 2009: Software Transactional Memory

Data Handoff

63

Thread 1

data = 42;
atomic {
 ready = true;
}

Can r1 = true && r2 = 0?

Initially data = 0 ready = false

Thread 2

r1 = false;

atomic {
 r1 = ready;
}
if (r1) {
 r2 = data
}

ConsumerProducer

Sole purpose of atomic block is to establish synchronization
order. It is reasonable to forbid this result (Answer: No!)

Herbstcampus 2009: Software Transactional Memory

Data Handoff

64

Thread 1

data = 42;
atomic {}
ready = true;

Can r1 = true && r2 = 0?

Initially data = 0 ready = false;

Thread 2

r1 = false;

atomic {}
r1 = ready;
if (r1) {
 r2 = data
}

ConsumerProducer

Answer is not so clear here. If behavior should be
forbidden, then empty atomic blocks cannot be eliminated.

Herbstcampus 2009: Software Transactional Memory 65

Outline
• Problems with Locking
• TM Intro
• Language Integration
• Empirical Studies about TM
• Design Space for TM Semantics
• Design Space for TM Implementations

– Hardware vs. Software
– Version Management
– Conflict Detection

• STM Performance

Herbstcampus 2009: Software Transactional Memory

Hardware vs. Software

66

Hardware:
+ Efficient
+ Implementation can be based on existing mechanisms for

speculative execution
+ Strong atomicity
- Limited capacity for speculative state
- Limited flexibility for different policies, e.g., contention

management
- ISA extensions not obvious

Software:
- slow, efficient implementations compromise on semantics

(weak atomicity)

Herbstcampus 2009: Software Transactional Memory

Hardware vs. Software

67

Hardware:
+ Efficient
+ Implementation can be based on existing mechanisms for

speculative execution
+ Strong atomicity
- Limited capacity for speculative state
- Limited flexibility for different policies, e.g., contention

management
- ISA extensions not obvious [McDonaldEtAl’06]

Software:
- slow, efficient implementations compromise on semantics

(weak atomicity)

This talk: Software Transactional Memory (STM)

Herbstcampus 2009: Software Transactional Memory

Hardware vs. Software

68

Hybrid TM:
• Baseline operation in hardware
• Fallback to software on critical cases (buffer overflow,

obstinate contention)

Hardware-accelerated STM [SahaEtAl’06]:
• Starting point is STM
• Selected, frequent STM operations are accelerated with

hardware primitives.

Herbstcampus 2009: Software Transactional Memory 69

STM Design Space

• Version management
• Conflict detection

– Consistent versus inconsistent views
– Visible versus invisible reads
– Contention management

• Blocking versus non-blocking progress
• Engine-room issues …

Herbstcampus 2009: Software Transactional Memory

Version Management

Lazy (redo logs)
• Writes go to log, not to memory
• Reads require look-aside
• Apply changes on commit
• Rolling back wedged transaction easy

Eager (undo logs)
• Update in place (leads to weak atomicity)
• Reads are fast
• Rolling back wedged transaction complex

70

Herbstcampus 2009: Software Transactional Memory

Conflict Detection

Eager
• conflict with other transaction detected as soon

as read would return inconsistent value.
• expensive

Lazy
• Validation of read-set at commit time
• Orphan transactions: another txn wrote into

current txn’s read set
– Can orphans observe inconsistent views?

71

Herbstcampus 2009: Software Transactional Memory 72

Do Orphan (Zombie) Transactions
Always See Consistent States?

Yes!
• Invariants observed (no surprises)
• Expensive (maybe)

No!
• Who cares about surprises?

– Divide by zero, infinite loops, et cetera …
– Use exception/interrupt handlers?

• More efficient (maybe)

Source: [Herlihy&Shavit’08]

Herbstcampus 2009: Software Transactional Memory 73

Read Synchronization

Visible (mark objects)
• Consistent views
• Additional info for contention management
• Quick validation
• Slower overall (maybe)

Invisible (no footprint)
• Inconsistent views
• Slow validation
• Faster overall (maybe)

Herbstcampus 2009: Software Transactional Memory 74

Contention Management

Choice of policy can have significant impact on
application performance [Scherer&Scott’04].
• “Aggressive”: txn aborts other conflicting txn at

commit time.
• “Polite”: txn aborts itself on conflict and backs

off.
• “Timestamp”: on conflict, younger txn is

aborted.
• ... <many more>

Herbstcampus 2009: Software Transactional Memory 75

Blocking vs. Non-Blocking Progress

Blocking
• Delay of one thread can delay other threads
• Internals based on fine-granular locks
• Design choice of many recent STMs

Non-blocking
• Validation and commit based on lock-free algorithms
• Different progress guarantees (obstruction-free, ...,

wait-free): delay only due to contention.
• Slower overall (maybe)

Herbstcampus 2009: Software Transactional Memory 76

Engine Room Issues ...

• Levels of indirection
• Compatibility with HTM
• There’s lots more …

Source: [Herlihy&Shavit’08]

Herbstcampus 2009: Software Transactional Memory

• Problems with Locking
• TM Intro
• Language Integration
• Empirical Studies about TM
• Design Space for TM Semantics
• Design Space for TM Implementations

– Hardware vs. Software
– Version Management
– Conflict Detection

• STM Performance

77

Herbstcampus 2009: Software Transactional Memory

• Sample data from IBM’s STM [CascavalEtAl’08]
• Two different algorithms:

– fv (full validation),
– gv# (global version number)

• Metrics:
– Scaling
– Single-thread overhead
– Components of overhead

78

Herbstcampus 2009: Software Transactional Memory 79Source: [CascavalEtAl’08]

42 COMMUNICATIONS OF THE ACM | NOVEMBER 2008 | VOL. 51 | NO. 11

practice

end users, the advantage of an STM is
that it offers an environment to trans-
actionalize (that is, porting to TM) their
applications without incurring extra
hardware cost or waiting for such hard-
ware to be developed.

Conversely, an STM entails nontriv-
ial drawbacks with respect to perfor-
mance and programming semantics:

Overheads: ! In general, STM results

in higher sequential overheads than tra-
ditional shared-memory programming
or HTM. This is the result of the software
expansion of loads and stores to shared
mutable locations inside transactions
to tens of additional instructions that
constitute the STM implementation
(for example, the STM_READ code in
Figure 1c). Depending on the transac-
tional characteristics of a workload,

these overheads can become a high
hurdle for STM to achieve performance.
The sequential overheads (that is, con-
flict-free overheads that are incurred re-
gardless of the actions of other concur-
rent threads) must be overcome by the
concurrency-enabling characteristics of
transactional memory.

Semantics: ! In order to avoid incur-
ring high STM overheads, non-transac-
tional accesses (such as loads and stores
occurring outside transactions) are typi-
cally not expanded. This has the effect
of weakening—and hence complicat-
ing—the semantics of transactions,
which may require the programmer
to be more careful than when strong
transactional semantics are supported.
The following are some of the weakened
guarantees that are usually associated
with such STMs:

Weak atomicity: ! Typically the STM
runtime libraries cannot detect conflicts
between transactions and non-transac-
tional accesses. Thus, the semantics of
atomicity are weakened to allow unde-
tected conflicts with non-transactional
accesses (referred to as weak atomic-
ity3), or equivalently put the burden on
the programmer to guarantee that no
such conflicts can possibly take place.

Privatization: ! Some STM designs
prohibit the seamless privatization of
memory locations, that is, the transi-
tion from being accessed transaction-
ally to being accessed privately—or
non-transactionally in general, by us-
ing locks. For some STM designs, once
a location is accessed transactionally,
it must continue to be accessed trans-
actionally. With some STM designs, the
programmer can ease the transition by
guaranteeing that the first access to the
privatized location—such as after the
location is no longer accessible by other
threads—is transactional.

Memory reclamation: ! Some STM
designs prohibit the seamless reclama-
tion of the memory locations accessed
transactionally for arbitrary reuse, such
as using malloc and free. With such
STM designs, memory allocation and
deallocation for locations accessed
transactionally are handled differently
from other locations.

Legacy binaries: ! STM needs to ob-
serve all memory activities of the trans-
actional regions to ensure atomicity and
isolation. STMs that achieve this obser-
vation by code instrumentation gener-

Figure 2: . Scalability results for three STM runtimes on a quad-core
Intel Xeon server: IBM, Intel STM v2, and Sun TL2.

Scalability of the delaunay application. Baseline is the
sequential code without synchronization.

Herbstcampus 2009: Software Transactional Memory

Single-threaded Overhead

80

practice

NOVEMBER 2008 | VOL. 51 | NO. 11 | COMMUNICATIONS OF THE ACM 43

STM barely attains single thread perfor-
mance at 4 threads, while on vacation
none of the STMs actually overcome the
overhead of transactional memory even
with 8 threads.

Compiler Instrumentation. The com-
piler is a necessary component of an
STM-based programming environment
that is to be adopted by mass program-
mers. Its basic role is to eliminate the
need for programmers to manually in-
strument memory references to STM
read- and write-barriers. While offering
convenience, compiler instrumenta-
tion does add another layer of over-
heads to the STM system by introducing
redundant barriers, often due to conser-
vativeness of compiler analysis, as also
observed in Yoo.36

Figure 3 provides another baseline:
the overhead of compiler instrumen-
tation. The performance is measured
on a 16-way POWER5 running AIX 5.3.
For the STMXLC curve, we use the un-
instrumented versions of the codes
and annotate transactional regions and
functions using the language exten-
sions provided by the compiler.31

ally cannot support transactions calling
legacy codes that are not instrumented
(for example, third-party libraries) with-
out seriously limiting concurrency, such
as by serializing transactions.

Evaluation
Here we use the following set of bench-
marks:

b+tree ! is an implementation of da-
tabase indexing operations on a b-tree
data structure for which the data is
stored only on the tree leaves. This im-
plementation uses coarse-grain trans-
actions for every tree operation. Each
b+ tree operation starts from the tree
root and descends down to the leaves.
A leaf update may trigger a structural
modification to rebalance the tree. A
rebalancing operation often involves
recursive ascent over the child-parent
edges. In the worst case, the rebalanc-
ing operation modifies the entire tree.
Our workload inserts 2,048 items in a
b+tree of order 20. For this code we have
only a transactional version that is not
manually instrumented, therefore ex-
perimental results are presented only
in configurations where we can use our
compiler to provide instrumentation;

delaunay ! implements the Delaunay
Mesh Refinement algorithm described
in Kulkarni et al.15 The code produces
a guaranteed quality Delaunay mesh.
This is a Delaunay triangulation with
the additional constraint that no angle
in the mesh be less than 30 degrees.
The benchmark takes as input an un-
refined Delaunay triangulation and
produces a new triangulation that sat-
isfies this constraint. In the TM imple-
mentation of the algorithm, multiple
threads choose their elements from a
work-queue and refine the cavities as
separate transactions.

genome ! , kmeans, and vacation are
part of the STAMP benchmark suite19

version 0.9.4. For a detailed description
of these benchmarks see STAMP.30

Baseline Performance. In Figure 2 we
present a performance comparison of
three STMs: the IBM,31, 34 Intel,14 and
Sun’s TL27 STMs. The runs are on a
quad-core, two-way hyperthreaded Intel
Xeon 2.3GHz box running Linux Fedora
Core 6. In these runs, we used the manu-
ally instrumented versions of the codes
that aggressively minimize the number
of barriers for the IBM and TL2 STMs.
Since we do not have access to low-level
APIs for the Intel STM, the curves for the
Intel STM are from codes instrumented
by its compiler, which incur additional
barrier overheads due to compiler in-
strumentation.36 The graphs are scal-
ability curves with respect to the serial,
non-transactionalized version. There-
fore a value of 1 on the y-axis represents
performance equal to the serial version.
The performance of these STMs is most-
ly on par, with the IBM STM showing
better scalability on delaunay and TL2
obtaining better scalability on genome.
However, the overall performance ob-
tained is very low: on kmeans the IBM

Figure 3: Scalability results for manual and compiler instrumented benchmarks on AIX PowerPC with IBM XLCSTM compiler.

8

7

6

5

4

3

2

1

0

 fv gv#

b+tree

ru
nt

im
e

(n
or

m
. t

o
se

qu
en

tia
l)

118.1 49.243.8

delaunay kmeans genome vacation

Figure 4: Single-threaded overhead of the STM algorithms.

Source: [CascavalEtAl’08]

Single-thread overhead of fv and gv# algorithms for
different applications.

Herbstcampus 2009: Software Transactional Memory

Performance Challenges

81

44 COMMUNICATIONS OF THE ACM | NOVEMBER 2008 | VOL. 51 | NO. 11

practice

instrumentation and provides an accu-
rate breakdown of the STM overheads.

We study the performance of two
STM algorithms: one that fully validates
(“fv") the read set after each transac-
tional read and one that uses a global
version number (“gv#") to avoid the full
validation, while maintaining the cor-
rectness of the operations. The fv algo-
rithm provides more concurrency at a
much higher price. The gv# is deemed
as one of the best trade-offs for STM im-
plementations.

Figure 4 presents the single-thread-
ed overhead of these algorithms over
sequential runs, illustrating again the
substantial slowdowns that the algo-
rithms induce. Figure 5 breaks down
these overheads into the various STM
components. For both algorithms, the
overhead of transactional reads domi-
nates due to the frequency of read op-
erations relative to all other operations.
The effectiveness of the global version
number in reducing overheads is shown
in the lower read overhead of “gv#.”

Figure 6 gives a fine-grain breakdown
of the overheads of the transactional
read operation. As expected, the over-
head of validating the read set domi-
nates transactional read time in the “fv”
configuration. For both algorithms, the
isync operations (necessary for ordering
the metadata read and data read as well
as the data read and validation) form a
substantial component. In applications
that perform writes before reads in the
same transaction (delaunay, kmeans),
the time spent checking whether a loca-
tion has been written by prior writes in
the same transaction forms a significant
component of the total time. Interest-
ingly, reading the data itself is a negligi-
ble amount of the total time, indicating
the hurdles that must be overcome for
the performance of these algorithms to
be compelling.

Figure 7 gives a similar breakdown
of the transactional commit operation.
As before, the “fv" configuration suf-
fers from having to validate the read set.
Other dominant overheads for both con-
figurations are that of having to acquire
the metadata for the write set (which in-
volves a sequence of load-linked/store-
conditional operations) and the sync
operations that are necessary for order-
ing the metadata acquires, data writes,
and metadata releases. Once again, the
data writes themselves form a small

100

90

80

70

60

50

40

30

20

10

0

 other
 read

 end
 free

 malloc
 write

 begin
 stack_range

 desc
 kernel

b+tree
fv fv fv fv fvgv# gv# gv# gv# gv#

ru
nt

im
e

(n
or

m
. t

o
se

qu
en

tia
l)

delaunay kmeans genome vacation

Figure 5: Percentage of time spent in different STM operations.

Figure 6: Percentage of time spent in STM read sub-operations.

100

90

80

70

60

50

40

30

20

10

0
b+tree
fv fv fv fv fvgv# gv# gv# gv# gv#

%
 o

f c
yc

le
s

(n
or

m
. t

o
fv

)

delaunay kmeans genome vacation

 return
 validate
 sync
 read data

 check read after write
 setup
 call
 other

 add metadata to read set
 check if metadata is locked
 read metadata
 calculate metadata

Compiler over-instrumentation is
more pronounced in traditional, un-
managed languages, such as C and C++,
where a compiler instrumentation with-
out interprocedural analysis may end
up instrumenting every memory refer-
ence in the transactional region (except
for stack accesses). Indeed, our compil-
er instrumentation more than doubled
the number of dynamic read barriers in
delaunay, genome, and kmeans. Interpro-
cedural analysis can help improve the
tightness of compiler instrumentation
for some cases, but is generally limited
by the accuracy of global analysis.

STM Operations Performance. Given
this baseline, we now analyze in detail
which operations in the STM cause the
overhead. For this purpose, we use a
cycle-accurate simulator of the Power-
PC architecture that provides hooks for
instrumentation. The STM operations
and suboperations are instrumented
with these simulator hooks. The reason
for this environment is that we want
to capture the overheads at instruc-
tion level and eliminate any other non-
determinism introduced by real hard-
ware. The simulator eliminates all other
bookkeeping operations introduced by

Source: [CascavalEtAl’08]

Fraction of components in STM single-thread overhead.

Herbstcampus 2009: Software Transactional Memory

Performance: Take-away

• Top-contributors to overhead:
– read barrier (read)
– commit (end)

• Hardware can help to accelerate read-set
validation
– Intel’s architecture with thread-local mark bits in cache

[SahaEtAl’06]
– Even then: significant overheads remain that cannot be

attributed to a single source / optimization opportunity

82

Herbstcampus 2009: Software Transactional Memory

Remember This

• TM is a real step forward in parallel
programming methodology

• TM does not solve parallel programming menace
– Focus on task-parallel shared memory
– Parallel still more difficult than sequential

programming
– Buggy programs are easily possible

• TM is a hot research area. Challenges:
– Language integration: TM semantics, debugging, ...
– For STM: performance, performance, performance

83

Herbstcampus 2009: Software Transactional Memory

[Herlihy&Shavit’08] Maurice Herlihy, Nir Shavit: Companion Slides “The
Art of Multiprocessor Programming”, Licence: http://
creativecommons.org/licenses/by-sa/3.0/

[Amarasinghe’07] Saman Amarasinghe: Lecture on “Introduction to
Parallel Architectures”, MIT 2007.

[GrossmannEtAl’06] Dan Grossmann, Jeremy Manson, William Pugh:
Lecture on “What do high-level memory models mean for transactions?”,
MSPC, 2006.

[Scherer&Scott’04] William N. Scherer III, Michael Scott: “Contention
management in dynamic software transactional memory”, CSJP 2004.

[CacsavalEtAl’08] C. Cascaval et al.: “Software transactional memory:
Why is it only a research toy”, Communications of the ACM 51/11, 2008.

[SahaEtAl’06] B. Saha et al.: “Architectural support for software
transactional memory”, IEEE MICRO, 2006.

84

Sources

http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/

Herbstcampus 2009: Software Transactional Memory

[KulkarniEtAl’06] M. Kulkarni, L. P. Chew, K. Pingali: “Using transactions
in delaunay mesh generation”, WTW, 2006.

[RossbachEtAl’09] Ch. Rossbach, O. S. Hofmann, E. Witchel: “Is
transactional programming actually easier?”, WDDD, 2009.

[LuEtAl’08] S. Lu, S. Park, E. Seao, Y. Zhou: “Learning from mistakes - A
comprehensive study on real world concurrency bug characteristics”,
ASPLOS, 2008.

[McDonaldEtAl’06] A. McDonald, et al.: ”Architectural Semantics for
Practical Transactional Memory” , ISCA, 2006.

85

Sources

Vielen Dank!

Christoph von Praun
Geoorg-Simon-Ohm Hochschule, Nürnberg

Herbstcampus 2009: Software Transactional Memory 87

Bac
kup

Herbstcampus 2009: Software Transactional Memory

Delaunay Mesh Refinement

88

Figure 4. An example of processing several elements in parallel. The left mesh is the original mesh, while the right mesh
represents the refinement. In the left mesh, the dark grey triangles represent the “bad” elements, while the horizontally
shaded are the other elements in the cavity. In the right mesh, the the black points are the newly added points and
vertically shaded triangles are the newly created elements.

3.2 Compile-time Parallelization

Compile-time parallelization approaches perform depen-
dence analysis to determine a partial order of program op-
erations, and schedule operations for parallel execution if
there are no dependences between them. We do not know
of any compile-time parallelization technique that will
succeed in finding parallelism in this problem. Since each
iteration of the while loop of Figure 2 reads and writes the
mesh data structure, any compile-time analysis technique
that treats the entire mesh as a monolithic unit will assert
that there are dependences from every iteration to all suc-
ceeding iterations. Since the mesh is read at the beginning
of each iteration and updated at the end of that iteration,
there is little useful overlap of computations between iter-
ations. A more sophisticated, fine-grained analysis might
try to use techniques like shape analysis [8, 14] to dis-
cern if the reads and writes to the mesh data structure in
different iterations are disjoint. However, such an analy-
sis requires determining whether the cavities of two bad
triangles are disjoint, but this depends on the mesh, and
thus is not a question that can be determined at compile
time. Note also that any compile-time parallelization of
the code in Figure 2 will still process bad triangles in the
same order as the sequential code would, which is unnec-
essarily restrictive.

3.3 Optimistic Parallelization

Since static parallelization will not work, we turn instead
to optimistic parallelization. At this stage, we leverage
the second insight regarding the sequential algorithm: the
elements can be processed in any order. Therefore, we do
not need to adhere to a specific schedule of processing
bad triangles, but can instead expand cavities whenever
we can ensure that they can run in parallel with other

concurrent expansions. To implement this sort of paral-
lelization, we can perform dynamic checks to detect in-
terference during cavity expansion. For example, we can
lock mesh elements during cavity expansion; if some el-
ement needed for a cavity expansion is already locked by
another cavity expansion, there is interference and one of
the cavity expansions must be rolled back. If no interfer-
ence is detected, we make the appropriate changes to the
mesh. In this way, we are able to exploit the inherent par-
allelism in the mesh generation algorithm even without
knowledge of which elements can be processed in paral-
lel, but at the risk of doing useless work in computations
that get rolled back.

3.4 Experimental Results

Optimistic parallelization is useful only if the risk of roll-
backs is small. A priori, it is unclear whether or not
optimistic parallelization is useful for Delaunay mesh
generation. In addition, the amount of parallelism is very
data-dependent and depends on the size of the mesh, the
number of bad triangles, etc. The probability of conflict
between two concurrent cavity expansions depends not
only on these factors but on the scheduling policy for
parallel activities.

Antonopoulos et al. [2] have investigated how many
cavities could be expanded in parallel in a mesh of one
million triangles (see Figure 5). They focused on coarse-
grain parallelization on a distributed-memory computer,
which required mesh partitioning and distribution. They
found that across the entire problem, there were more
than 256 cavities that could be expanded in parallel until
almost the end of execution, and, halfway through exe-
cution, there were between 350 and 800 thousand cav-
ities that could be expanded in parallel. These results

Source: [KulkarniEtAl’06]

Herbstcampus 2009: Software Transactional Memory 89

This work is licensed under a Creative Commons Attribution-
ShareAlike 2.5 License.

• You are free:
– to Share — to copy, distribute and transmit the work
– to Remix — to adapt the work

• Under the following conditions:
– Attribution. You must attribute the work to “The Art of

Multiprocessor Programming” (but not in any way that suggests that
the authors endorse you or your use of the work).

– Share Alike. If you alter, transform, or build upon this work, you
may distribute the resulting work only under the same, similar or a
compatible license.

• For any reuse or distribution, you must make clear to others the license
terms of this work. The best way to do this is with a link to
– http://creativecommons.org/licenses/by-sa/3.0/.

• Any of the above conditions can be waived if you get permission from
the copyright holder.

• Nothing in this license impairs or restricts the author's moral rights.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

