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Moore’s Law

Clock speed 
flattening 
sharply

Transistor 
count still 

rising

Source: [Peyton-Jones]
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Instruction-level 
Parallelism

Thread-level 
Parallelism

Chip-Multiprocessors 
(CMPs)

Pipelined and 
superscalar 
architectures

Source: [Amarasinghe’07]

VLSI Generations
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Multicore Architectures
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Traditional Scaling

6

User code

Traditional
Uniprocessor 

Speedup
1.8x

7x

3.6x

Time: Moore’s Law

Source: [Herlihy&Shavit’08]
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Multicore Scaling Process

7

User code

Multicore

Speedup
1.8x

7x
3.6x

Unfortunately, not so simple…

Source: [Herlihy&Shavit’08]



Herbstcampus 2009: Software Transactional Memory

Real-World Scaling Process
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1.8x 2x 2.9x

User code

Multicore

Speedup

Parallelization and synchronization 
require great care… 

Source: [Herlihy&Shavit’08]
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Why do we care? 

• Time no longer cures software bloat
• When you double your path length

– You can’t just wait 6 months
– Your software must somehow exploit 

twice as much concurrency

Source: [Herlihy&Shavit’08]
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Multicore 

Implicitly parallel:
Parallelization done 

with tools or libraries

Data-parallel:
Operate in 
parallel on 
bulk data

Parallel Programming

Task-parallel:
Explicit threads

communication and 
synchronization

Explicitly parallel:
Parallelization done 

by programmer
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Multicore 

Implicitly parallel:
Parallelization done 

with tools or libraries

Data-parallel:
Operate in 
parallel on 
bulk data

Parallel Programming

Task-parallel:
Explicit threads

communication and 
synchronization

Explicitly parallel:
Parallelization done 

by programmer

This talk
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• Problems with Locking
• TM Intro
• Language Integration
• Empirical Studies about TM
• Design Space for TM Semantics
• Design Space for TM Implementations
• STM Performance
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Outline
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State of the Art in Task Parallel 
Programming

• Today’s software 
– Non-scalable methodologies (Locks)
– State of the art has not much changed in 30 

years

• Today’s hardware
– Poor support for scalable synchronization

• Cannot exploit cheap (hardware) threads

Source: [Herlihy&Shavit’08]Source: [Herlihy&Shavit’08]
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Why Locking Doesn’t Scale

• Not Robust
• Relies on Conventions
• Hard to Use

– Conservative
– Deadlocks
– Lost wake-ups

• Not Composable

Source: [Herlihy&Shavit’08]
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Locks are not Robust

If a thread holding
a lock is delayed …

... other threads 
may not make 
progress either

Source: [Herlihy&Shavit’08]
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Why Locking Doesn’t Scale

• Not Robust
• Relies on conventions
• Hard to Use

– Conservative
– Deadlocks
– Lost wake-ups

• Not Composable

Source: [Herlihy&Shavit’08]
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Locking Relies on Conventions

• Relation between
– Lock bit and object bits
– Exists only in programmer’s mind

• Order in which locks are 
taken

/* 
 * When a locked buffer is visible to the I/O layer
 * BH_Launder is set. This means before unlocking
 * we must clear BH_Launder,mb() on alpha and then
 * clear BH_Lock, so no reader can see BH_Launder set
 * on an unlocked buffer and then risk to deadlock. 
 */ 

Actual comment 
from Linux Kernel

Source: [Bradley Kuszmaul]
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Why Locking Doesn’t Scale

• Not Robust
• Relies on conventions
• Hard to Use

– Conservative
– Deadlocks
– Lost wake-ups

• Not Composable

Source: [Herlihy&Shavit’08]
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Programming Challenge

enq(x) deq(y)Double-ended queue

No interference if 
ends “far enough” 

apart

Source: [Herlihy&Shavit’08]
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Programming Challenge

enq(x) deq(y)Double-ended queue

Interference if ends 
“close enough” 

together

Source: [Herlihy&Shavit’08]
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Programming Challenge

deq() deq()Double-ended queue

Make sure suspended 
dequeuers awake as 

needed

Source: [Herlihy&Shavit’08]
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You Try It …

• One lock?
– Too conservative

• Locks at each end?
– Deadlock

• Without locks, solely using atomic 
operations?

Source: [Herlihy&Shavit’08]
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Actual Solution

• [Michael&Scott’96]
• What good is a methodology (locks, 

fine-grain atomic operations) where 
solutions to such elementary problems 
are hard enough to be publishable?

Source: [Herlihy&Shavit’08]
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Why Locking Doesn’t Scale

• Not Robust
• Relies on conventions
• Hard to Use

– Conservative
– Deadlocks
– Lost wake-ups

• Not Composable

Source: [Herlihy&Shavit’08]
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Locks do not compose

add(T1, item)

delete(T1, item)

add(T2, item) item item

Move from T1 to T2

Must lock T2

before deleting 
from T1

lock T2lock T2lock T1lock T1

lock T1lock T1

item

Exposing lock internals breaks abstraction.

Hashtable Must lock T1

before adding 
item

Source: [Herlihy&Shavit’08]



Herbstcampus 2009: Software Transactional Memory

• Problems with Locking
• TM Intro
• Language Integration
• Empirical Studies about TM
• Design Space for TM Semantics
• Design Space for TM Implementations
• STM Performance
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Double ended queue revisited
public void enq(Item x) {

  

    QNode q = new QNode(x);

    q.left = this.left;

    this.left.right = q;

    this.left = q;

  

}

sequential 
program
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ACID principle from database systems:
• Atomicity: All-or-nothing semantics
• Isolation: Effects of concurrent computations do not 

leak into transaction.
28

Double ended queue revisited
public void enq(Item x) {

  atomic {

    QNode q = new QNode(x);

    q.left = this.left;

    this.left.right = q;

    this.left = q;

  }

}

sequential 
program

transaction
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Possible implementation of atomic

Optimistic concurrency:

• ... read and write operations in <sequential code> 
are recorded in thread-local log
–Writes go to log, not to memory
–Reads obtain value from log or memory

• Commit at the end: 
– in one atomic step, check validity of prior 

reads and update memory 
–If commit fails, rerun transaction

29

 atomic { <sequential code> }
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atomic is Compositional

Transfer item from one queue to another:

30

public void transfer(Queue q1, Queue q2) { 

  atomic { 

    Item tmp = q1.deq();

    q2.enq(tmp);

  }

}
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• Re-execute when the value of a previously read 
variable changes

• No condition variables, no lost wakeups!

31

Conditional Blocking

public Item deq() {

  atomic {

    if (this.left == null)

      retry;

    ...

  }

}

rollback and 
re-execute from scratch



Herbstcampus 2009: Software Transactional Memory

• Transaction succeeds only if
–q1 is not empty
–q2 is not full

• No need to rewrite deq() and enq()
• Note: wait() and signal() do not compose

32

Blocking is Compositional
public void transfer(Queue q1, Queue q2) { 

  atomic { 

    Item tmp = q1.deq();

    q2.enq(tmp);

  }

}
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• Problems with Locking
• TM Intro
• Language Integration

– Library and Compiler Support
– Exception Handling
– I/O
– Semantics of Nested Transactions

• Empirical Studies about TM
• Design Space for TM Semantics
• Design Space for TM Implementations
• STM Performance

33
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We Don’t have Language Support (Yet)

STMs typically implemented as a library
– sometimes with compiler support

…
 a = 5;
 atomic {
   b = a+5;
 }
 c = b;
…

…
 a = 5;
 stmStart();
   temp = stmRead(&a);
   stmWrite(&b, temp +5);
 stmCommit();
 c = b;
…

library calls

Source: [Herlihy&Shavit’08]
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We Don’t have Language Support (Yet)

• Compiler provides
– syntactic convenience for the programmer
– correctness 

• programmer may instrument too few accesses 

– optimizations 
• programmer may instrument too many accesses

• Still, design and development of an STM 
solely based on a library is hard ...

Source: [Herlihy&Shavit’08]
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Why It’s Hard

• TM is not just a collection of useful 
objects and methods

• Effect of transactional synchronization 
is pervasive
– How functions are defined
– Control flow: commit & abort
– Exception handling
– Irrevocable actions, I/O

Source: [Herlihy&Shavit’08]



Herbstcampus 2009: Software Transactional Memory

Exceptions

Should uncaught exceptions commit or abort a 
transaction?
• Commit: May leave the data structure in 

inconsistent state.
• Abort: What about exception object itself, and 

transactional state that may be reachable from 
exception object?

37

  atomic { 
    try {
      ...
    } catch (SomeException e) { ... }
  }
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I/O
• atomic blocks require possibility to revoke 

operations (rollback)
• Not obvious for I/O:

• Transaction may see x==y due to interleaving 
with other transactions

• Such transaction is doomed to roll back and 
must not call launchMissiles()

38

  atomic { 
    if (x == y)
      launchMissiles();
  }
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Transactional Output is OK
1. Output is buffered in transactional shared 

memory

2. Separate I/O thread performs “real” output

39

  atomic { 
    if (x == y)
      print(txbuffer, “Hello world”);
  }

  while (true)
    atomic {
      char* tmp = txbuffer.get();
      if (tmp)  print(tmp)
      else retry;
    }
  }
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• Problems with Locking
• TM Intro
• Language Integration
• Empirical Studies about TM

– User Study
– Application Study of Real World Concurrency Bugs

• Design Space for TM Semantics
• Design Space for TM Implementations
• STM Performance

40
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User Study [RossbachEtAl’09]
147 undergraduate students are given simple parallel 
programming assignment. 
Different techniques should be used for concurrency 
control (one big lock, fine-grained locking, TM)

Results:
• TM is much less error-prone than fine-grain 

locking
• Newbie programmers have trouble understanding 

transactions, though TM is still easier than fine-
grain locks.

41Source: [RossbachEtAl’08]
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Study of Real World Concurrency Bugs 
[LuEtAl’08]

Study of 105 bugs in 4 randomly chosen very large 
open-source programs:

• “TM can help avoid about one third (39%) of the 
examined concurrency bugs.”

• “Some (19%) of the examined concurrency bugs 
cannot benefit from basic TM designs because of 
their bug pattern.”

42Source: [LuEtAl’08]
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• Problems with Locking
• TM Intro
• Language Integration
• Empirical Studies about TM
• Design Space for TM Semantics

– Atomicity and Isolation
– Ordering

• Design Space for TM Implementations
• STM Performance

43
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A “Simple” Model of Concurrency 
“The behavior of a concurrent program is  
  the interleaving of operations executed by 
  individual threads”.

Premises:
1. Operations are atomic
2.Threads execute operations in program order
3.Operations are observed in a total global 

order compatible with the program order.

44
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A “Simple” Model of Concurrency 

45

thread1 x.write(1)

initially x, y = 0

y.read(1)

thread2 y.write(1) x.read(1)

x = 1
y = 0

x = 0
y = 0

x = 1
y = 1

x = 1
y = 1

x = 1
y = 1

program order
real time execution order
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Reality is different

1. Operations are atomic
Modern processors support atomic read, write 
and rmw operation at word-granularity

2.Threads execute operations in program order
3.Operations are observed in a total global 

order compatible with the program order.
Compiler and processors re-order individual 
operations if data- and control-dependences in 
the sequential program permit.

46
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Example 

47

thread1 x.write(1)

initially x, y = 0

y.read(0)
thread2 y.write(1) x.read(0)

x = 1
y = 0

x = 0
y = 0

x = 1
y = 1

x = 1
y = 0

x = 0
y = 0

Thread 2 violates principle #2 (program order)

program order
real time execution order
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1. Operations are atomic
Atomic blocks group composite operations.

2.Threads execute operations in program order
Atomic blocks order operations within a 
thread.

3.Operations are observed in a total global 
order compatible with the program order.
Atomic blocks induce a global synchronization 
order.

TM to the Rescue!
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Unfortunately reality is not as bright when 
looking at the details. Two topics:

1. Operations are atomic

2. Threads execute operations in program order
3. Operations are observed in a total global 

order compatible with the program order.

Semantics of Atomic Blocks

Atomicity and Isolation 
(ACID)

Ordering



Atomicity: Partial effects of a transaction are not 
visible to concurrent computations.
Isolation: Effects of concurrent computations do not 
leak into a txn.
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ACID Revisited

50

Any concurrent computation 
• Semantics called strong atomicity
• Ideal, but probably inefficient to 

implement in software

Only other transactions
• Semantics called weak atomicity
• Reasonable model for STM
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Strong atomicity says: “No!”
• Sequential reasoning inside atomic block
Weak atomicity says: “Yes!”
• Non-local reasoning necessary

51

Thread 1

atomic { 

  x = 0;
  if (x == 1)
    y = 1;
}

Thread 2

x = 1;

Can y == 1?

Initially x, y == 0



• Strong vs. weak atomicity is decided by 
programming language designers
– high-level memory model
– Details: [GrossmanEtAl’06]

• Caveat: Weak atomicity has many flavors!
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Languages need 
High-level Memory Models

52



... gives the following guarantees:
1) Inside a transaction, multiple accesses to the 

same variable return the same value provided 
that no write intervenes.

2) If a variable is written inside an transaction, 
subsequent reads in the transaction obtain the 
value that was written.

3)An intermediate value, which is overwritten in 
the same transaction or a retry is not visible to 
other computations.

Herbstcampus 2009: Software Transactional Memory

Strong Atomicity

53



• Weak atomicity gives up one or several 
guarantees made by strong atomicity

Herbstcampus 2009: Software Transactional Memory

Flavors of Weak Atomicity

54
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1)  Inside a transaction, multiple accesses to the same 
variable return the same value provided that no write 
intervenes.

55

Thread 1

atomic { 

  r1 = x;
  r2 = x;
}

Thread 2

x = 1;

Can r1 == 1, r2 == 2?  Yes!

Initially x, y == 0
Thread 3

x = 2;

Flavors of Weak Atomicity (1/4)
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2) If a variable is written inside an transaction, subsequent 
reads in the transaction obtain the value that was written.

56

Thread 1

atomic { 

  x = 0;
  if (x == 1)
    y = 1;
}

Thread 2

x = 1;

Can y == 1?  Yes!

Initially x, y == 0

Flavors of Weak Atomicity (2/4)
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3) An intermediate value, which is overwritten in the same 
transaction or a retry is not visible to other computations.

57

Thread 1

atomic { 

  x = 1;
  x = 2;
}

Thread 2

r1 = x;

Can r1 == 1?  Yes: “Dirty Read”!

Initially x == 0

Flavors of Weak Atomicity (3/4)
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3) An intermediate value, which is overwritten in the same 
transaction or a retry is not visible to other computations.

58

Thread 1

atomic { 

  y = 1;
  if (x == 0)
    retry;
}

Thread 2

r1 = y;

atomic { 

  x = 1;

}

Can r1 == 1?  Yes: “Speculative dirty read”!

Initially x, y == 0

Flavors of Weak Atomicity (4/4)
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Thread 1

atomic { 

  r = x;
  x = r+1;
}

Thread 2

x = 2;

Can x == 1? 
 
Strong Atomicity: No!
Any flavor of 
weak atomicity: No!

Initially x == 0

Atomic Blocks vs. Java Synchronized

Can x == 1?
  
Yes: “Lost Update”!

Thread 1

synchronized(lock) { 

  r = x;
  x = r+1;
}

Thread 2

x = 2;



Accessing the same variable inside and outside a 
transaction is used in common programming idioms:
• Thread-safe lazy initialization
• Data handoff
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Ordering Revisited

60
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Thread-Safe Initialization

61

Thread 1 

data = 1;
mfence;
flag = true;

Can r1 != 0 && r2 = 0?  No!

Initially flag = false, data = 0;

Thread 2

r1 = flag;

if (r1 == true) 

  r2 = data;

Idiom works on architectures with processor consistency 
(X86), resp. TSO (Sparc).

Unsynchronized read (nx)Initialization (1x)
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Thread-Safe Initialization with 
Atomic Block?

62

Thread 1

atomic { 

  data = 1;
  flag = true;
}

Can r1 != 0 && r2 = 0?  

Initially flag = false, data = 0;

Thread 2

r1 = flag;

if (flag == true) 

  r2 = data;

Some programming languages say yes!, i.e. permit 
this result (e.g Fortress). Idiom not correct in these 
languages!
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Data Handoff

63

Thread 1 

data = 42;
atomic {
  ready = true;
}

Can r1 = true && r2 = 0?  

Initially data = 0 ready = false

Thread 2

r1 = false;

atomic {
  r1 = ready;
}
if (r1) {
  r2 = data
}

ConsumerProducer

Sole purpose of atomic block is to establish synchronization 
order. It is reasonable to forbid this result (Answer: No!)
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Data Handoff

64

Thread 1 

data = 42;
atomic {}
ready = true;

Can r1 = true && r2 = 0?  

Initially data = 0 ready = false;

Thread 2

r1 = false;

atomic {}
r1 = ready;
if (r1) {
  r2 = data
}

ConsumerProducer

Answer is not so clear here. If behavior should be 
forbidden, then empty atomic blocks cannot be eliminated.
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Outline
• Problems with Locking
• TM Intro
• Language Integration
• Empirical Studies about TM
• Design Space for TM Semantics
• Design Space for TM Implementations

– Hardware vs. Software
– Version Management
– Conflict Detection

• STM Performance
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Hardware vs. Software

66

Hardware:
+ Efficient
+ Implementation can be based on existing mechanisms for 

speculative execution
+ Strong atomicity
- Limited capacity for speculative state
- Limited flexibility for different policies, e.g., contention 

management
- ISA extensions not obvious

Software: 
- slow, efficient implementations compromise on semantics

(weak atomicity)
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Hardware vs. Software

67

Hardware:
+ Efficient
+ Implementation can be based on existing mechanisms for 

speculative execution
+ Strong atomicity
- Limited capacity for speculative state
- Limited flexibility for different policies, e.g., contention 

management
- ISA extensions not obvious [McDonaldEtAl’06]

Software: 
- slow, efficient implementations compromise on semantics

(weak atomicity)

This talk: Software Transactional Memory (STM)
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Hardware vs. Software

68

Hybrid TM:
• Baseline operation in hardware
• Fallback to software on critical cases (buffer overflow, 

obstinate contention)

Hardware-accelerated STM [SahaEtAl’06]:
• Starting point is STM 
• Selected, frequent STM operations are accelerated with 

hardware primitives.
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STM Design Space

• Version management
• Conflict detection

– Consistent versus inconsistent views
– Visible versus invisible reads
– Contention management

• Blocking versus non-blocking progress
• Engine-room issues …
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Version Management

Lazy (redo logs)
• Writes go to log, not to memory
• Reads require look-aside 
• Apply changes on commit
• Rolling back wedged transaction easy

Eager (undo logs)
• Update in place (leads to weak atomicity)
• Reads are fast
• Rolling back wedged transaction complex

70
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Conflict Detection

Eager
• conflict with other transaction detected as soon 

as read would return inconsistent value.
• expensive

Lazy
• Validation of read-set at commit time
• Orphan transactions: another txn wrote into 

current txn’s read set
– Can orphans observe inconsistent views?

71
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Do Orphan (Zombie) Transactions 
Always See Consistent States?

Yes!
• Invariants observed (no surprises)
• Expensive (maybe)

No!
• Who cares about surprises?

– Divide by zero, infinite loops, et cetera …
– Use exception/interrupt handlers?

• More efficient (maybe)

Source: [Herlihy&Shavit’08]
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Read Synchronization

Visible (mark objects)
• Consistent views
• Additional info for contention management
• Quick validation
• Slower overall (maybe)

Invisible (no footprint)
• Inconsistent views
• Slow validation
• Faster overall (maybe)
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Contention Management

Choice of policy can have significant impact on 
application performance [Scherer&Scott’04].
• “Aggressive”: txn aborts other conflicting txn at 

commit time.
• “Polite”: txn aborts itself on conflict and backs 

off.
• “Timestamp”: on conflict, younger txn is 

aborted.
• ... <many more>
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Blocking vs. Non-Blocking Progress

Blocking
• Delay of one thread can delay other threads 
• Internals based on fine-granular locks
• Design choice of many recent STMs

Non-blocking
• Validation and commit based on lock-free algorithms
• Different progress guarantees (obstruction-free, ..., 

wait-free): delay only due to contention.
• Slower overall (maybe)
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Engine Room Issues ...

• Levels of indirection
• Compatibility with HTM
• There’s lots more …

Source: [Herlihy&Shavit’08]
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• Problems with Locking
• TM Intro
• Language Integration
• Empirical Studies about TM
• Design Space for TM Semantics
• Design Space for TM Implementations

– Hardware vs. Software
– Version Management
– Conflict Detection

• STM Performance
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• Sample data from IBM’s STM [CascavalEtAl’08]
• Two different algorithms: 

– fv (full validation), 
– gv# (global version number)

• Metrics:
– Scaling 
– Single-thread overhead
– Components of overhead

78
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practice

end users, the advantage of an STM is 
that it offers an environment to trans-
actionalize (that is, porting to TM) their 
applications without incurring extra 
hardware cost or waiting for such hard-
ware to be developed.

Conversely, an STM entails nontriv-
ial drawbacks with respect to perfor-
mance and programming semantics:

Overheads: !  In general, STM results 

in higher sequential overheads than tra-
ditional shared-memory programming 
or HTM. This is the result of the software 
expansion of loads and stores to shared 
mutable locations inside transactions 
to tens of additional instructions that 
constitute the STM implementation 
(for example, the STM_READ code in 
Figure 1c). Depending on the transac-
tional characteristics of a workload, 

these overheads can become a high 
hurdle for STM to achieve performance. 
The sequential overheads (that is, con-
flict-free overheads that are incurred re-
gardless of the actions of other concur-
rent threads) must be overcome by the 
concurrency-enabling characteristics of 
transactional memory.

Semantics: !  In order to avoid incur-
ring high STM overheads, non-transac-
tional accesses (such as loads and stores 
occurring outside transactions) are typi-
cally not expanded. This has the effect 
of weakening—and hence complicat-
ing—the semantics of transactions, 
which may require the programmer 
to be more careful than when strong 
transactional semantics are supported. 
The following are some of the weakened 
guarantees that are usually associated 
with such STMs: 

Weak atomicity: !  Typically the STM 
runtime libraries cannot detect conflicts 
between transactions and non-transac-
tional accesses. Thus, the semantics of 
atomicity are weakened to allow unde-
tected conflicts with non-transactional 
accesses (referred to as weak atomic-
ity3), or equivalently put the burden on 
the programmer to guarantee that no 
such conflicts can possibly take place. 

Privatization: !  Some STM designs 
prohibit the seamless privatization of 
memory locations, that is, the transi-
tion from being accessed transaction-
ally to being accessed privately—or 
non-transactionally in general, by us-
ing locks. For some STM designs, once 
a location is accessed transactionally, 
it must continue to be accessed trans-
actionally. With some STM designs, the 
programmer can ease the transition by 
guaranteeing that the first access to the 
privatized location—such as after the 
location is no longer accessible by other 
threads—is transactional. 

Memory reclamation: !  Some STM 
designs prohibit the seamless reclama-
tion of the memory locations accessed 
transactionally for arbitrary reuse, such 
as using malloc and free. With such 
STM designs, memory allocation and 
deallocation for locations accessed 
transactionally are handled differently 
from other locations. 

Legacy binaries: !  STM needs to ob-
serve all memory activities of the trans-
actional regions to ensure atomicity and 
isolation. STMs that achieve this obser-
vation by code instrumentation gener-

Figure 2: . Scalability results for three STM runtimes on a quad-core 
Intel Xeon server: IBM, Intel STM v2, and Sun TL2.

Scalability of the delaunay application. Baseline is the 
sequential code without synchronization.
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STM barely attains single thread perfor-
mance at 4 threads, while on vacation 
none of the STMs actually overcome the 
overhead of transactional memory even 
with 8 threads.

Compiler Instrumentation. The com-
piler is a necessary component of an 
STM-based programming environment 
that is to be adopted by mass program-
mers. Its basic role is to eliminate the 
need for programmers to manually in-
strument memory references to STM 
read- and write-barriers. While offering 
convenience, compiler instrumenta-
tion does add another layer of over-
heads to the STM system by introducing 
redundant barriers, often due to conser-
vativeness of compiler analysis, as also 
observed in Yoo.36

Figure 3 provides another baseline: 
the overhead of compiler instrumen-
tation. The performance is measured 
on a 16-way POWER5 running AIX 5.3. 
For the STMXLC curve, we use the un-
instrumented versions of the codes 
and annotate transactional regions and 
functions using the language exten-
sions provided by the compiler.31

ally cannot support transactions calling 
legacy codes that are not instrumented 
(for example, third-party libraries) with-
out seriously limiting concurrency, such 
as by serializing transactions. 

Evaluation
Here we use the following set of bench-
marks: 

b+tree !  is an implementation of da-
tabase indexing operations on a b-tree 
data structure for which the data is 
stored only on the tree leaves. This im-
plementation uses coarse-grain trans-
actions for every tree operation. Each 
b+ tree operation starts from the tree 
root and descends down to the leaves. 
A leaf update may trigger a structural 
modification to rebalance the tree. A 
rebalancing operation often involves 
recursive ascent over the child-parent 
edges. In the worst case, the rebalanc-
ing operation modifies the entire tree. 
Our workload inserts 2,048 items in a 
b+tree of order 20. For this code we have 
only a transactional version that is not 
manually instrumented, therefore ex-
perimental results are presented only 
in configurations where we can use our 
compiler to provide instrumentation; 

delaunay  ! implements the Delaunay 
Mesh Refinement algorithm described 
in Kulkarni et al.15 The code produces 
a guaranteed quality Delaunay mesh. 
This is a Delaunay triangulation with 
the additional constraint that no angle 
in the mesh be less than 30 degrees. 
The benchmark takes as input an un-
refined Delaunay triangulation and 
produces a new triangulation that sat-
isfies this constraint. In the TM imple-
mentation of the algorithm, multiple 
threads choose their elements from a 
work-queue and refine the cavities as 
separate transactions. 

genome ! , kmeans, and vacation are 
part of the STAMP benchmark suite19 

version 0.9.4. For a detailed description 
of these benchmarks see STAMP.30 

Baseline Performance. In Figure 2 we 
present a performance comparison of 
three STMs: the IBM,31, 34 Intel,14 and 
Sun’s TL27 STMs. The runs are on a 
quad-core, two-way hyperthreaded Intel 
Xeon 2.3GHz box running Linux Fedora 
Core 6. In these runs, we used the manu-
ally instrumented versions of the codes 
that aggressively minimize the number 
of barriers for the IBM and TL2 STMs. 
Since we do not have access to low-level 
APIs for the Intel STM, the curves for the 
Intel STM are from codes instrumented 
by its compiler, which incur additional 
barrier overheads due to compiler in-
strumentation.36 The graphs are scal-
ability curves with respect to the serial, 
non-transactionalized version. There-
fore a value of 1 on the y-axis represents 
performance equal to the serial version. 
The performance of these STMs is most-
ly on par, with the IBM STM showing 
better scalability on delaunay and TL2 
obtaining better scalability on genome. 
However, the overall performance ob-
tained is very low: on kmeans the IBM 

Figure 3: Scalability results for manual and compiler instrumented benchmarks on AIX PowerPC with IBM XLCSTM compiler. 
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Figure 4: Single-threaded overhead of the STM algorithms.

Source: [CascavalEtAl’08]

Single-thread overhead of fv and gv# algorithms for 
different applications.
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instrumentation and provides an accu-
rate breakdown of the STM overheads.

We study the performance of two 
STM algorithms: one that fully validates 
(“fv") the read set after each transac-
tional read and one that uses a global 
version number (“gv#") to avoid the full 
validation, while maintaining the cor-
rectness of the operations. The fv algo-
rithm provides more concurrency at a 
much higher price. The gv# is deemed 
as one of the best trade-offs for STM im-
plementations.

Figure 4 presents the single-thread-
ed overhead of these algorithms over 
sequential runs, illustrating again the 
substantial slowdowns that the algo-
rithms induce. Figure 5 breaks down 
these overheads into the various STM 
components. For both algorithms, the 
overhead of transactional reads domi-
nates due to the frequency of read op-
erations relative to all other operations. 
The effectiveness of the global version 
number in reducing overheads is shown 
in the lower read overhead of “gv#.”

Figure 6 gives a fine-grain breakdown 
of the overheads of the transactional 
read operation. As expected, the over-
head of validating the read set domi-
nates transactional read time in the “fv” 
configuration. For both algorithms, the 
isync operations (necessary for ordering 
the metadata read and data read as well 
as the data read and validation) form a 
substantial component. In applications 
that perform writes before reads in the 
same transaction (delaunay, kmeans), 
the time spent checking whether a loca-
tion has been written by prior writes in 
the same transaction forms a significant 
component of the total time. Interest-
ingly, reading the data itself is a negligi-
ble amount of the total time, indicating 
the hurdles that must be overcome for 
the performance of these algorithms to 
be compelling.

Figure 7 gives a similar breakdown 
of the transactional commit operation. 
As before, the “fv" configuration suf-
fers from having to validate the read set. 
Other dominant overheads for both con-
figurations are that of having to acquire 
the metadata for the write set (which in-
volves a sequence of load-linked/store-
conditional operations) and the sync 
operations that are necessary for order-
ing the metadata acquires, data writes, 
and metadata releases. Once again, the 
data writes themselves form a small 
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Figure 5: Percentage of time spent in different STM operations.

Figure 6: Percentage of time spent in STM read sub-operations.
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Compiler over-instrumentation is 
more pronounced in traditional, un-
managed languages, such as C and C++, 
where a compiler instrumentation with-
out interprocedural analysis may end 
up instrumenting every memory refer-
ence in the transactional region (except 
for stack accesses). Indeed, our compil-
er instrumentation more than doubled 
the number of dynamic read barriers in 
delaunay, genome, and kmeans. Interpro-
cedural analysis can help improve the 
tightness of compiler instrumentation 
for some cases, but is generally limited 
by the accuracy of global analysis.

STM Operations Performance. Given 
this baseline, we now analyze in detail 
which operations in the STM cause the 
overhead. For this purpose, we use a 
cycle-accurate simulator of the Power-
PC architecture that provides hooks for 
instrumentation. The STM operations 
and suboperations are instrumented 
with these simulator hooks. The reason 
for this environment is that we want 
to capture the overheads at instruc-
tion level and eliminate any other non-
determinism introduced by real hard-
ware. The simulator eliminates all other 
bookkeeping operations introduced by 

Source: [CascavalEtAl’08]

Fraction of components in STM single-thread overhead.
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Performance: Take-away

• Top-contributors to overhead:
– read barrier (read)
– commit (end)

• Hardware can help to accelerate read-set 
validation
– Intel’s architecture with thread-local mark bits in cache

[SahaEtAl’06]
– Even then: significant overheads remain that cannot be 

attributed to a single source / optimization opportunity

82
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Remember This

• TM is a real step forward in parallel 
programming methodology

• TM does not solve parallel programming menace
– Focus on task-parallel shared memory
– Parallel still more difficult than sequential 

programming
– Buggy programs are easily possible

• TM is a hot research area. Challenges:
– Language integration: TM semantics, debugging, ...
– For STM: performance, performance, performance

83



Herbstcampus 2009: Software Transactional Memory

[Herlihy&Shavit’08] Maurice Herlihy, Nir Shavit: Companion Slides “The 
Art of Multiprocessor Programming”, Licence: http://
creativecommons.org/licenses/by-sa/3.0/

[Amarasinghe’07] Saman Amarasinghe: Lecture on “Introduction to 
Parallel Architectures”, MIT 2007.

[GrossmannEtAl’06] Dan Grossmann, Jeremy Manson, William Pugh: 
Lecture on “What do high-level memory models mean for transactions?”,  
MSPC, 2006.

[Scherer&Scott’04] William N. Scherer III, Michael Scott: “Contention 
management in dynamic software transactional memory”, CSJP 2004.

[CacsavalEtAl’08] C. Cascaval et al.: “Software transactional memory: 
Why is it only a research toy”, Communications of the ACM 51/11, 2008.

[SahaEtAl’06] B. Saha et al.: “Architectural support for software 
transactional memory”, IEEE MICRO, 2006.

84

Sources

http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/


Herbstcampus 2009: Software Transactional Memory

[KulkarniEtAl’06] M. Kulkarni, L. P. Chew, K. Pingali: “Using transactions 
in delaunay mesh generation”, WTW, 2006.

[RossbachEtAl’09] Ch. Rossbach, O. S. Hofmann, E. Witchel: “Is 
transactional programming actually easier?”, WDDD, 2009.

[LuEtAl’08] S. Lu, S. Park, E. Seao, Y. Zhou: “Learning from mistakes - A 
comprehensive study on real world concurrency bug characteristics”, 
ASPLOS, 2008.

[McDonaldEtAl’06] A. McDonald, et al.: ”Architectural Semantics for 
Practical Transactional Memory” , ISCA, 2006.

85

Sources



Vielen Dank!

Christoph von Praun
Geoorg-Simon-Ohm Hochschule, Nürnberg



Herbstcampus 2009: Software Transactional Memory 87

Bac
kup



Herbstcampus 2009: Software Transactional Memory
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Figure 4. An example of processing several elements in parallel. The left mesh is the original mesh, while the right mesh
represents the refinement. In the left mesh, the dark grey triangles represent the “bad” elements, while the horizontally
shaded are the other elements in the cavity. In the right mesh, the the black points are the newly added points and
vertically shaded triangles are the newly created elements.

3.2 Compile-time Parallelization

Compile-time parallelization approaches perform depen-
dence analysis to determine a partial order of program op-
erations, and schedule operations for parallel execution if
there are no dependences between them. We do not know
of any compile-time parallelization technique that will
succeed in finding parallelism in this problem. Since each
iteration of the while loop of Figure 2 reads and writes the
mesh data structure, any compile-time analysis technique
that treats the entire mesh as a monolithic unit will assert
that there are dependences from every iteration to all suc-
ceeding iterations. Since the mesh is read at the beginning
of each iteration and updated at the end of that iteration,
there is little useful overlap of computations between iter-
ations. A more sophisticated, fine-grained analysis might
try to use techniques like shape analysis [8, 14] to dis-
cern if the reads and writes to the mesh data structure in
different iterations are disjoint. However, such an analy-
sis requires determining whether the cavities of two bad
triangles are disjoint, but this depends on the mesh, and
thus is not a question that can be determined at compile
time. Note also that any compile-time parallelization of
the code in Figure 2 will still process bad triangles in the
same order as the sequential code would, which is unnec-
essarily restrictive.

3.3 Optimistic Parallelization

Since static parallelization will not work, we turn instead
to optimistic parallelization. At this stage, we leverage
the second insight regarding the sequential algorithm: the
elements can be processed in any order. Therefore, we do
not need to adhere to a specific schedule of processing
bad triangles, but can instead expand cavities whenever
we can ensure that they can run in parallel with other

concurrent expansions. To implement this sort of paral-
lelization, we can perform dynamic checks to detect in-
terference during cavity expansion. For example, we can
lock mesh elements during cavity expansion; if some el-
ement needed for a cavity expansion is already locked by
another cavity expansion, there is interference and one of
the cavity expansions must be rolled back. If no interfer-
ence is detected, we make the appropriate changes to the
mesh. In this way, we are able to exploit the inherent par-
allelism in the mesh generation algorithm even without
knowledge of which elements can be processed in paral-
lel, but at the risk of doing useless work in computations
that get rolled back.

3.4 Experimental Results

Optimistic parallelization is useful only if the risk of roll-
backs is small. A priori, it is unclear whether or not
optimistic parallelization is useful for Delaunay mesh
generation. In addition, the amount of parallelism is very
data-dependent and depends on the size of the mesh, the
number of bad triangles, etc. The probability of conflict
between two concurrent cavity expansions depends not
only on these factors but on the scheduling policy for
parallel activities.

Antonopoulos et al. [2] have investigated how many
cavities could be expanded in parallel in a mesh of one
million triangles (see Figure 5). They focused on coarse-
grain parallelization on a distributed-memory computer,
which required mesh partitioning and distribution. They
found that across the entire problem, there were more
than 256 cavities that could be expanded in parallel until
almost the end of execution, and, halfway through exe-
cution, there were between 350 and 800 thousand cav-
ities that could be expanded in parallel. These results

Source: [KulkarniEtAl’06]



Herbstcampus 2009: Software Transactional Memory 89

           
This work is licensed under a Creative Commons Attribution-
ShareAlike 2.5 License. 

• You are free:
– to Share — to copy, distribute and transmit the work 
– to Remix — to adapt the work 

• Under the following conditions:
– Attribution. You must attribute the work to “The Art of 

Multiprocessor Programming” (but not in any way that suggests that 
the authors endorse you or your use of the work). 

– Share Alike. If you alter, transform, or build upon this work, you 
may distribute the resulting work only under the same, similar or a 
compatible license. 

• For any reuse or distribution, you must make clear to others the license 
terms of this work. The best way to do this is with a link to
– http://creativecommons.org/licenses/by-sa/3.0/. 

• Any of the above conditions can be waived if you get permission from 
the copyright holder. 

• Nothing in this license impairs or restricts the author's moral rights. 

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

