T (300500 4 Wissenstransfer
o ifHerbstcampus 1o

Stumbling Blocks and Stepping Stones auf dem Weg zum

Software Transactional Memory

Christoph von Praun

Geoorg-Simon-Ohm Hochschule, Niirnberg

THE ART

o

MULTIPROCESSOR
PROGRAMMING

[Herlihy&Shavit’'08]

Maurice Herlilty & Nir Shavir ™8 L4

Maurice Herlihy, Nir Shavit:
"The Art of Multiprocessor Programming”,
Morgan Kaufmann, 2008.

Moores Law

.)
‘ Transistor
1000000 count still
N\

rising P

100000

Clock speed\

10000

flattening

S m— -'T’. 1 \\ h l
1000 s "'-.-"r. > Sharpty /)

100

L
.
.

= + Clock Speed (MH2) [

» Transistors (000)

o1 [1 1 1

1971 1975 1979 1983 1987 1991 1995 1993 2003 2007

Source: [Peyton-Jones]

VLSI Generations

2,000,000,000 —
1,000,000,000 —

100,000,000

10,000,000 —

1,000,000 —

100,000 —

10,000 —

2,300 —

Source: [Amarasinghe'07]

Instruction-level

Parallelism
Dol Cong
Itanium 2 with SMEB of
Con
Hanum
Pee
Al J'Tom
Curve shows ‘Mooye’s Law'”: L’
transistor count dgubling A 1A
every two years " ek
’4‘ Pentium
ane @ ,’,
e
e |
" Pipelined and
, o ecee superscalar
’ architectures
% a0s0
004 +‘ ‘soe ‘ ’ ‘
1971 1980 1990 2000

Thread-level
Parallelism

Hankum 2 @ ©® Ouad-Core manium Tukwia

® G20
Powens § 1200
Geo_ ‘e

pche @ ’
" ¥ I3l
2 Quad

I
cre 2 Duo
e "‘Eull
’
’,
B

® Barton ® Ateers

Chip-Multiprocessors
(CMPs)

2008

Multicore Architectures

of cores
512 Picochip Ambric
PC102 AA 5110045
256 .
isco
CSR-1A
128 Intel
Tflops
A
64
32
Raza Cavium
Raw XLR Octeon
16 A A
8 Niagara., .. A Cell
Opteron 4P
Boardcom 1480
4 ‘“XEOITMP
Xbox360
PA-8800 Opteron Tanglewood
2 POWErA A dhdhidho bt
PExtrer\r('le hPower6
4004 8080 8086 286 386 486 Pentium P2 P3 Itanium ' o2
1 Y e e \ A A A A A A AMPS—A-A
8008 Athlon Itanium 2
year
1970 1980 1990 2000 2005

Source: [Amarasinghe'07]

Traditional Scaling

Speedup

User code

Traditional
Uniprocessor

Source: [Herlihy&Shavit'08]

1.8x%

3.6x

Time: Moores Law

Multicore Scaling Process

7X
Speedup 3.6X%
1.8x
[EE—a e ——
User code
Multicore l l l ' l I
d o d g
gt
Unfortunately, not so simple... 2 =

Source: [Herlihy&Shavit'08]

Real-World Scaling Process

2.9><4J

®

Speedup
1.8x 2X
) ——
. b
User code 2% 2@ F:,—/II_@L_
Multicore 0 O B L]
2 8

Parallelization and synchronization
require great care...

Source: [Herlihy&Shavit'08]

, |

| é’

et

=
= =

Why do we care?

e Time no longer cures software bloat
e When you double your path length

- You cant just wait 6 months

- Your software must somehow exploit
twice as much concurrency

Source : [Herlihy&Shavit'08]

Multicore :{> Parallel Programming

/\

Explicitly parallel:
Parallelization done
by programmer

Implicitly parallel:
Parallelization done

with tools or libraries

/

-

S

Task-parallel:
Explicit threads
communication and
synchronization

Data-parallel:
Operate in
parallel on
bulk data

Multicore :> Parallel Programming

/\

Explicitly parallel:
Parallelization done
by programmer

Implicitly parallel:
Parallelization done

with tools or libraries

/

-

S

Task-parallel:
Explicit threads
communication and
synchronization

Data-parallel:
Operate in
parallel on
bulk data

This talk

Outline

Problems with Locking

TM Intro

Language Integration

Empirical Studies about TM

Design Space for TM Semantics
Design Space for TM Implementations
STM Performance

State of the Art in Task Parallel
Programming

e Today's software
- Non-scalable methodologies (Locks)

- State of the art has not much changed in 30
years

e Today's hardware

— Poor support for scalable synchronization

e Cannot exploit cheap (hardware) threads

Source: [Herlihy&Shavit'08]

Why Locking Doesnt Scale

e Not Robust
e Relies on Conventions

e Hard to Use

- Conservative
— Deadlocks
- Lost wake-ups

e Not Composable

Source: [Herlihy&Shavit'08]

Locks are not Robust

If a thread holding
a lock is delayed ...

%

... other threads
may not make
progress either

Source: [Herlihy&Shavit'08]

Why Locking Doesnt Scale

e Not Robust
e Relies on conventions

e Hard to Use

- Conservative
— Deadlocks
- Lost wake-ups

e Not Composable

Source: [Herlihy&Shavit'08]

Locking Relies on Conventions

e Relation between
- Lock bit and object bits

- Exists only in programmers mind

e Order in which locks are Actual comment
taken from Linux Kernel

/*

When a locked buffer is visible to the I/O layer
BH Launder is set. This means before unlocking

we must clear BH Launder,mb() on alpha and then
clear BH Lock, so no reader can see BH Launder set
on an unlocked buffer and then risk to deadlock.

* ok * ok *

Source: [Bradley Kuszmaul]

Why Locking Doesnt Scale

e Not Robust
e Relies on conventions

e Hard to Use

- Conservative
— Deadlocks
- Lost wake-ups

e Not Composable

Source: [Herlihy&Shavit'08]

Programming Challenge

Double-ended ¢

Il! ||| <t

—tp-
G

000

Source : [Herlihy&Shavit'08]

G
—

ueue

—p |||

7=

No interference if
ends “far enough”

apart

-
o

AN

Programming Challenge

Double-ended queue

N \)
Interference if ends .

“close enough”
together

000

Source : [Herlihy&Shavit'08]

Programming Challenge

Double-ended queue

-
Make sure suspended .

dequeuers awake as
needed

000

Source : [Herlihy&Shavit'08]

You Try It ..

e One lock?

- Too conservative

e Locks at each end?
- Deadlock

e Without locks, solely using atomic
operations?

Source: [Herlihy&Shavit'08]

Actual Solution

e [Michael&Scott'96]

 What good is a methodology (locks,
fine-grain atomic operations) where
solutions to such elementary problems
are hard enough to be publishable?

Source: [Herlihy&Shavit'08]

Why Locking Doesnt Scale

e Not Robust
e Relies on conventions

e Hard to Use

- Conservative
— Deadlocks
- Lost wake-ups

e Not Composable

Source: [Herlihy&Shavit'08]

Locks do not compose

Hashtable
add(T,, item)

Move from T, to T,

delete(T,, item)
add(T,, item)

lock T,

item

lock T,

item

Must lock T,

before adding
Item

lock T,

Must lock T,

item before deleting

from T,

Exposing lock internals breaks abstraction.

Source: [Herlihy&Shavit'08]

Outline

TM Intro

Language Integration

Empirical Studies about TM

Design Space for TM Semantics
Design Space for TM Implementations
STM Performance

Double ended queue revisited

public void enq(Item x) {

QNode g = new QNode(x);
q.left = this.left; sequential
this.left.right = q; program

this.left = q;

Herbstcampus 2009: Software Transactional Memory

Double ended queue revisited

public void enq(Item x) { transaction

atomic {
QNode q = new QNode(Xx);
q.left = this.left; sequential
this.left.right = q; program
this.left = q;

}
¥

ACID principle from database systems:
e Atomicity: All-or-nothing semantics

e Isolation: Effects of concurrent computations do not
leak into transaction.

Herbstcampus 2009: Software Transactional Memory

Possible implementation of atomic

Optimistic concurrency:
atomic { <sequential code> }

® .. read and write operations in <sequential code>
are recorded in thread-local log

— Writes go to log, not to memory
— Reads obtain value from log or memory
® Commit at the end:

—in one atomic step, check validity of prior
reads and update memory

— If commit fails, rerun transaction

Herbstcampus 2009: Software Transactional Memory

atomic 1S Compositional
Transfer item from one queue to another:

public void transfer(Queue gql, Queue g2) {
atomic {
Item tmp = gl.deq(Q);
g2.enq(tmp) ;
}
}

Herbstcampus 2009: Software Transactional Memory

Conditional Blocking

public Item deq() {

atomic {
1t (this.left == null)
try,;
'_ﬂe Y T rollback and
} re-execute from scratch

® Re-execute when the value of a previously read
variable changes

® No condition variables, no lost wakeups!

Herbstcampus 2009: Software Transactional Memory

Blocking is Compositional

public void transfer(Queue ql, Queue g2) {
atomic {
Item tmp = gl.deq();

q2.enq(tmp) ;
}
}

® Transaction succeeds only if
—ql is not empty
—q2 is not full
® No need to rewrite deq() and enq()
® Note: wait() and signal() do not compose

Herbstcampus 2009: Software Transactional Memory

Language Integration

- Library and Compiler Support
— Exception Handling

- 1/0

- Semantics of Nested Transactions
Empirical Studies about TM

Design Space for TM Semantics
Design Space for TM Implementations
STM Performance

We Dont have Language Support (Yet)

STMs typically implemented as a library

- sometimes with compiler support

4o 4o library calls
atomic { stmStart();

b = a+5; S temp = stmRead(&a);
} stmwrite(&b, temp +5);
C = b; stmCommit();

C = b;

Source: [Herlihy&Shavit'08]

We Dont have Language Support (Yet)

e Compiler provides
- syntactic convenience for the programmer
- correctness
e programmer may instrument too few accesses
- optimizations
e programmer may instrument too many accesses
e Still, design and development of an STM
solely based on a library is hard ...

Source: [Herlihy&Shavit'08]

Why Its Hard

e TM is not just a collection of useful
objects and methods

e Effect of transactional synchronization
IS pervasive

- How functions are defined

- Control flow: commit & abort
— Exception handling

- Irrevocable actions, 1/0

Source: [Herlihy&Shavit'08]

Exceptions

atomic {
try {

} &ééch (SomeException e) { ... }
}

Should uncaught exceptions commit or abort a
transaction?

e Commit: May leave the data structure in
Inconsistent state.

e Abort: What about exception object itself, and
transactional state that may be reachable from
exception object?

Herbstcampus 2009: Software Transactional Memory

I/0

e atomic blocks require possibility to revoke
operations (rollback)

e Not obvious for 1/0:

atomic {
1f (x == vy)
TaunchMissiles();

e Transaction may see x==y due to interleaving
with other transactions

e Such transaction is doomed to roll back and
must not call launchMissiles()

Herbstcampus 2009: Software Transactional Memory

Transactional Output is OK

1. Output is buffered in transactional shared
memory

atomic {
if (x ==y) E:£>>

print(txbuffer, “Hello world”);

2. Separate I/0 thread performs “real” output

while (true)
atomic {

char* tmp = txbuffer.get(); r, l1
if (tmp) print(tmp) E:£>>

else retry;

¥
}

Herbstcampus 2009: Software Transactional Memory

Outline

Empirical Studies about TM

- User Study
- Application Study of Real World Concurrency Bugs

Design Space for TM Semantics
Design Space for TM Implementations
STM Performance

User Study [RossbachEtAl'09]

147 undergraduate students are given simple parallel
programming assignment.

Different techniques should be used for concurrency
control (one big lock, fine-grained locking, TM)

Results:

e TM is much less error-prone than fine-grain
locking

e Newbie programmers have trouble understanding
transactions, though TM is still easier than fine-
grain locks.

Source: [RossbachEtAI'08]

Study of Real World Concurrency Bugs
[LUEtAL'08]

Study of 105 bugs in 4 randomly chosen very large
open-source programs:

® "TM can help avoid about one third (39%) of the
examined concurrency bugs.’

o “Some (19%) of the examined concurrency bugs
cannot benefit from basic TM designs because of
their bug pattern.”

Source: [LUETAI'08]

Outline

e Design Space for TM Semantics
- Atomicity and Isolation

- Ordering
e Design Space for TM Implementations
e STM Performance

A “Simple” Model of Concurrency

"The behavior of a concurrent program is

the interleaving of operations executed by
individual threads”.

Premises:
1. Operations are atomic

2. Threads execute operations in program order

3.Operations are observed in a total global
order compatible with the program order.

Herbstcampus 2009: Software Transactional Memory

A “Simple” Model of Concurrency

initially x, y = 0

threadl -ynrirefd)— S L€ 3 g
thread2 e B 2 L L 11-1 ¢ 3 A B xread{ty - >
@ l @ i >
X=0||x=1||x=1 X =1 X =1
y = 0] Y = 0] Yy = 1 y = 1 y = 1

---> program order
—> real time execution order

Reality is different

Modern processors support atomic read, write
and rmw operation at word-granularity

Compiler and processors re-order individual
operations if data- and control-dependences in
the sequential program permit.

Herbstcampus 2009: Software Transactional Memory

Example

Thread 2 violates principle #2 (program order)

Initially x, y =0

threadl searibefi Y IT= o) E———— >

thread2 - AR (E) PR G (@)
)</

*~——¢ o e >
x=0 |x=0|x=1 x=1| |[x=1
y=0] ly=0]|y=0 y=0 |y=1

---> program order
—> real time execution order

TM to the Rescue!

Atomic blocks group composite operations.

Atomic blocks order operations within a
thread.

Atomic blocks induce a global synchronization
order.

Herbstcampus 2009: Software Transactional Memory

Semantics of Atomic Blocks

Unfortunately reality is not as bright when
looking at the details. Two topics:

Atomicity and Isolation
(ACID)

Ordering

Herbstcampus 2009: Software Transactional Memory

ACID Revisited

Atomicity: Partial effects of a transaction are not

visible to|concurrent computations.

Isolation: Effects of |concurrent computations

leak into a ’rxn./

Any concurrent computation

« Semantics called strong atomicity

 Ideal, but probably inefficient to
implement in software

v

do not

Only other transactions
« Semantics called weak atomicity
« Reasonable model for STM

Initially x, y == O

Thread 1 Thread 2
atomic { X = 1;
X = 0;
if (x == 1)
y = 1;
}
Cany == 17

Strong atomicity says: “"No!”

® Sequential reasoning inside atomic block
Weak atomicity says: "Yes!”

® Non-local reasoning necessary

Herbstcampus 2009: Software Transactional Memory

Languages need
High-level Memory Models

e Strong vs. weak atomicity is decided by
programming language designers
- high-level memory model
- Details: [GrossmanEtAl'06]

e Caveat: Weak atomicity has many flavors!

Herbstcampus 2009: Software Transactional Memory

Strong Atomicity

.. gives the following guarantees:

1) Inside a transaction, multiple accesses to the
same variable refurn the same value provided
that no write intervenes.

2)If a variable is written inside an transaction,
subsequent reads in the transaction obtain the
value that was written.

3) An intermediate value, which is overwritten in
the same transaction or a retry is not visible fo
other computations.

Herbstcampus 2009: Software Transactional Memory

Flavors of Weak Atomicity

e Weak atomicity gives up one or several
guarantees made by strong atomicity

Herbstcampus 2009: Software Transactional Memory

Flavors of Weak Atomicity (1/4)

ided that no write

Initially x, y ==
Thread 1 Thread 2 Thread 3
atomic { X = 1; X = 2;
rl = X
r2 = X;
}

Canrl ==1, r2 == 2? Yes!

Herbstcampus 2009: Software Transactional Memory

Flavors of Weak Atomicity (2/4)

ubsequent

2) If a vari is_written inside an tra
' value that was written.

reads in the trans

Initially x, y ==
Thread 1 Thread 2
atomic { X = 1;
X = 0;
if (x == 1)
y = 1;
}

Can y ==1? Yes!

Herbstcampus 2009: Software Transactional Memory

Flavors of Weak Atomicity (3/4)

3) An infe iate value, which is overwri i e same
transaction or a r isible to other computations.

Initially x ==
Thread 1 Thread 2
atomic { rl = x;
X = 1;
X = 2;
}

Can rl == 1? Yes: "Dirty Read"”!

Herbstcampus 2009: Software Transactional Memory

Flavors of Weak Atomicity (4/4)

3) An infermrediate_value, which is overwritten—n the same
transaction or a retry-is nof visible—ta_other computations.

Initially x, y == O

Thread 1 Thread 2
atomic { rl = vy;
y = 1; atomic {
if (x == 0) X = 1;
} retry; }

Can rl == 1? Yes: "Speculative dirty read”!

Herbstcampus 2009: Software Transactional Memory

Atomic Blocks vs. Java Synchronized

Initially x ==
Thread 1 Thread 2 Thread 1 Thread 2
atomic { X = 2; synchronized(lock) { X = 2;
r= X; r= X;
X = r+l; X = r+l;
} }
Can x == 17 Can X == 17
Strong Atomicity: No! Yes: “Lost Update”!

Any flavor of
weak atomicity: No!

Herbstcampus 2009: Software Transactional Memory

Ordering Revisited

Accessing the same variable inside and outside a
transaction is used in common programming idioms:

® Thread-safe lazy initialization
® Data handoff

Herbstcampus 2009: Software Transactional Memory

Thread-Safe Initialization

Initially flag = false, data = 0O;

Initialization (1x) Unsynchronized read (nx)
Thread 1 Thread 2
data = 1; rl = flag;
mfence; if (rl == true)
flag = true; r2 = data:

Canrl =0 && r2 = 0? No!

Idiom works on architectures with processor consistency
(X86), resp. TSO (Sparc).

Herbstcampus 2009: Software Transactional Memory

Thread-Safe Initialization with
Atomic Block?

Initially flag = false, data = 0O;

Thread 1 Thread 2
atomic { rl = flag;

data = 1; 1f (flag == true)
} flag = true; r2 = data;

Canrl =0 && r2 =07?

Some programming languages say vyes!, i.e. permit
this result (e.g Fortress). Idiom not correct in these
languages!

Herbstcampus 2009: Software Transactional Memory

Data Handoff

Initially data = O ready = false

Producer Consumer
Thread 1 Thread 2
data = 42; rl = false;
atomic { atomic {
ready = true; rl = ready;
if (rl) {
r2 = data
}

Canrl = true && r2 = 0?

Sole purpose of atomic block is to establish synchronization
order. It is reasonable to forbid this result (Answer: No!)

Herbstcampus 2009: Software Transactional Memory

Data Handoff

Initially data = O ready = false;

Producer Consumer
Thread 1 Thread 2
data = 42; rl = false;
atomic {} atomic {}
ready = true; rl = ready;
if (rl) {
r2 = data
}

Canrl = true && r2 = 0?

Answer is not so clear here. If behavior should be
forbidden, then empty atomic blocks cannot be eliminated.

Herbstcampus 2009: Software Transactional Memory

Outline

Problems with Locking

TM Intro

Language Integration

Empirical Studies about TM

Design Space for TM Semantics
Design Space for TM Implementations

- Hardware vs. Software

- Version Management
— Conflict Detection

STM Performance

65

Hardware vs. Software

Hardware:
+ Efficient

+ Implementation can be based on existing mechanisms for
speculative execution

+ Strong atomicity
- Limited capacity for speculative state

— Limited flexibility for different policies, e.g., contention
management

- ISA extensions not obvious

Software;

- slow, efficient implementations compromise on semantics
(weak atomicity)

Hardware vs. Software

Hardware:

+
+

+

Efficient

Implementation can be based on existing mechanisms for
speculative execution

Strong atomicity
Limited capacity for speculative state

Limited flexibility for different policies, e.g., contention
management

ISA extensions not obvious [McDonaldEtAl'06]

Software: This talk: Software Transactional Memory (STM)

slow, efficient implementations compromise on semantics
(weak atomicity)

Hardware vs. Software

Hybrid TM:
e Baseline operation in hardware

e Fallback to software on critical cases (buffer overflow,
obstinate contention)

Hardware-accelerated STM [SahaEtAl'06]:
e Starting point is STM

e Selected, frequent STM operations are accelerated with
hardware primitives.

STM Design Space

e Version management
e Conflict detection

- Consistent versus inconsistent views
- Visible versus invisible reads
- Contention management

® Blocking versus non-blocking progress
® Engine-room issues ...

Herbstcampus 2009: Software Transactional Memory

Version Management

Lazy (redo logs)

e Writes go to log, not fo memory

® Reads require look-aside

e Apply changes on commit

e Rolling back wedged transaction easy

Eager (undo logs)
e Update in place (leads to weak atomicity)
® Reads are fast
e Rolling back wedged transaction complex

Herbstcampus 2009: Software Transactional Memory

Conflict Detection

Eager

e conflict with other transaction detected as soon
as read would return inconsistent value.

® expensive

Lazy
e Validation of read-set at commit time

e Orphan transactions: another txn wrote into
current txns read set

— Can orphans observe inconsistent views?

Herbstcampus 2009: Software Transactional Memory

Do Orphan (Zombie) Transactions
Always See Consistent States?

Yes!
e Invariants observed (no surprises)
e Expensive (maybe)

No!

e Who cares about surprises?

- Divide by zero, infinite loops, et cetera ...

- Use exception/interrupt handlers?

e More efficient (maybe)

Source: [Herlihy&Shavit'08]

Read Synchronization

Visible (mark objects)

e Consistent views

e Additional info for contention management
e Quick validation

e Slower overall (maybe)

Invisible (no footprint)

e Inconsistent views

e Slow validation

e Faster overall (maybe)

Herbstcampus 2009: Software Transactional Memory

Contention Management

Choice of policy can have significant impact on
application performance [Scherer&Scott'04].

e “Aggressive’: txn aborts other conflicting txn at
commit time.

e "Polite”: txn aborts itself on conflict and backs
off.

e "Timestamp”: on conflict, younger txn is
aborted.

® .. <many more>

Herbstcampus 2009: Software Transactional Memory

Blocking vs. Non-Blocking Progress

Blocking

e Delay of one thread can delay other threads
e Internals based on fine-granular locks

e Design choice of many recent STMs

Non-blocking
e Validation and commit based on lock-free algorithms

e Different progress guarantees (obstruction-free, ...,
wait-free): delay only due to contention.

e Slower overall (maybe)

Herbstcampus 2009: Software Transactional Memory

Engine Room Issues ...
e Levels of indirection

e Compatibility with HTM
e Theres lots more ..

Source: [Herlihy&Shavit'08]

Problems with Locking

TM Intro

Language Infegration

Empirical Studies about TM

Design Space for TM Semantics
Design Space for TM Implementations

- Hardware vs. Software

- Version Management
— Conflict Detection

STM Performance

77

e Sample data from IBMs STM [CascavalEtAl'08]
e Two different algorithms:

— fv (full validation),

- gv# (global version number)
® Metrics:

- Scaling

- Single-thread overhead

- Components of overhead

Herbstcampus 2009: Software Transactional Memory

delaunay == [ntel == [BM Sun TL2

N
(&)

N

!

|

Scalability normalized
to sequential
|_l

©
Ul

o

o
N
N
(o6}

Threads

Scalability of the delaunay application. Baseline is the
sequential code without synchronization.

Source: [CascavalEtAI'08]

M fv M gv#

1181 438 492

AL Ly H [

b+tree delaunay kmeans genome vacation

runtime (norm. to sequential)

Single-thread overhead of fv and gv# algorithms for
different applications.

Source: [CascavalETAI'08] 80

other M end B malloc B begin desc

M read free M write B stack_range M kernel
100
90
]
£ 80
a
S
<
% 70
2
E 60
o
=
g 50
S
c
S
= 40
30
20
10 =
0 fv gvit fv gv#t fv gvit fv gvit fv gvit
b+tree delaunay kmeans genome vacation

Fraction of components in STM single-thread overhead.

Source: [CascavalEtAI'08] 81

Performance: Take-away

e Top-contributors fo overhead:
- read barrier (read)
- commit (end)

e Hardware can help to accelerate read-set
validation

- Intel’s architecture with thread-local mark bits in cache
[SahaEtAl'06]

- Even then: significant overheads remain that cannot be
attributed to a single source / optimization opportunity

Herbstcampus 2009: Software Transactional Memory

Remember This

e TM is a real step forward in parallel
programming methodology

® TM does not solve parallel programming menace
- Focus on task-parallel shared memory

— Parallel still more difficult than sequential
programming

- Buggy programs are easily possible
e TM is a hot research area. Challenges:

- Language infegration: TM semantics, debugging, ...

- For STM: performance, performance, performance

Herbstcampus 2009: Software Transactional Memory

Sources

[Herlihy&Shavit’‘08] Maurice Herlihy, Nir Shavit: Companion Slides “The
Art of Multiprocessor Programming”, Licence: http://
creativecommons.org/licenses/by-sa/3.0/

[Amarasinghe’07] Saman Amarasinghe: Lecture on “Introduction to
Parallel Architectures”, MIT 2007.

[GrossmannEtAl’06] Dan Grossmann, Jeremy Manson, William Pugh:
Lecture on "What do high-level memory models mean for transactions?”,
MSPC, 2006.

[Scherer&Scott’04] William N. Scherer III, Michael Scott: “Contention
management in dynamic software transactional memory”, CSJP 2004.

[CacsavalEtAI’'08] C. Cascaval et al.: "Software transactional memory:
Why is it only a research toy”, Communications of the ACM 51/11, 2008.

[SahaEtAl‘06] B. Saha et al.: "Architectural support for software
transactional memory”, IEEE MICRO, 2006.

Herbstcampus 2009: Software Transactional Memory

http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/
http://creativecommons.org/licenses/by-sa/3.0/

Sources

[KulkarniEtAl‘06] M. Kulkarni, L. P. Chew, K. Pingali: “Using transactions
in delaunay mesh generation”, WTW, 2006.

[RossbachEtAl'09] Ch. Rossbach, O. S. Hofmann, E. Witchel: “Is
transactional programming actually easier?”, WDDD, 2009.

[LUETAL'08] S. Lu, S. Park, E. Seao, Y. Zhou: “Learning from mistakes - A
comprehensive study on real world concurrency bug characteristics”,
ASPLOS, 2008.

[McDonaldEtAl'06] A. McDonald, et al.: “Architectural Semantics for
Practical Transactional Memory” , ISCA, 2006.

Herbstcampus 2009: Software Transactional Memory

T (300500 4 Wissenstransfer
o ifHerbstcampus 1o

Vielen Dank!

Christoph von Praun

Geoorg-Simon-Ohm Hochschule, Niirnberg

Herbstcampus 2009: Software Transactional Memory

Delaunay Mesh Refinement

RP

N

||||..

Figure 4. An example of processing several elements in parallel. The left mesh is the original mesh, while the right mesh
represents the refinement. In the left mesh, the dark grey triangles represent the “bad” elements, while the horizontally
shaded are the other elements in the cavity. In the right mesh, the the black points are the newly added points and
vertically shaded triangles are the newly created elements.

Source: [KulkarniEtAI'06]

This work is licensed under a Creative Commons Attribution-
ShareAlike 2.5 License.

You are free:
- to Share — to copy, distribute and transmit the work
- to Remix — to adapt the work

Under the following conditions:

- Attribution. You must attribute the work to "The Art of
Multiprocessor Programming” (but not in any way that suggests that
the authors endorse you or your use of the work).

— Share Alike. If you alter, transform, or build upon this work, you
may distribute the resulting work only under the same, similar or a
compatible license.

For any reuse or distribution, you must make clear to others the license
terms of this work. The best way to do this is with a link to

- http://creativecommons.org/licenses/by-sa/3.0/.

Any of the above conditions can be waived if you get permission from
the copyright holder.

Nothing in this license impairs or restricts the author's moral rights.

http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/
http://creativecommons.org/licenses/by-sa/2.5/

