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VLSI Generations
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Multicore Architectures
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Traditional Scaling
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Multicore Scaling Process
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Real-World Scaling Process
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Why do we care?

e Time no longer cures software bloat
e When you double your path length

- You cant just wait 6 months

- Your software must somehow exploit
twice as much concurrency

Source : [Herlihy&Shavit'08]
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State of the Art in Task Parallel
Programming

e Today's software
- Non-scalable methodologies (Locks)

- State of the art has not much changed in 30
years

e Today's hardware

— Poor support for scalable synchronization

e Cannot exploit cheap (hardware) threads

Source: [Herlihy&Shavit'08]



Why Locking Doesnt Scale

e Not Robust
e Relies on Conventions

e Hard to Use

- Conservative
— Deadlocks
- Lost wake-ups

e Not Composable

Source: [Herlihy&Shavit'08]



Locks are not Robust

If a thread holding
a lock is delayed ...
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... other threads
may not make
progress either
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Locking Relies on Conventions

e Relation between
- Lock bit and object bits

- Exists only in programmers mind

e Order in which locks are Actual comment
taken from Linux Kernel

/*

When a locked buffer is visible to the I/O layer
BH Launder is set. This means before unlocking

we must clear BH Launder,mb() on alpha and then
clear BH Lock, so no reader can see BH Launder set
on an unlocked buffer and then risk to deadlock.

* ok * ok *

Source: [Bradley Kuszmaul]
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Programming Challenge

Double-ended queue
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Programming Challenge
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You Try It ..

e One lock?

- Too conservative

e Locks at each end?
- Deadlock

e Without locks, solely using atomic
operations?

Source: [Herlihy&Shavit'08]



Actual Solution

e [Michael&Scott'96]

 What good is a methodology (locks,
fine-grain atomic operations) where
solutions to such elementary problems
are hard enough to be publishable?

Source: [Herlihy&Shavit'08]



Why Locking Doesnt Scale

e Not Robust
e Relies on conventions

e Hard to Use

- Conservative
— Deadlocks
- Lost wake-ups

e Not Composable

Source: [Herlihy&Shavit'08]



Locks do not compose

Hashtable
add(T,, item)

Move from T, to T,

delete(T,, item)
add(T,, item)

lock T,

item

lock T,

item

Must lock T,

before adding
Item

lock T,

Must lock T,

item before deleting

from T,

Exposing lock internals breaks abstraction.

Source: [Herlihy&Shavit'08]
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Double ended queue revisited

public void enq(Item x) {

QNode g = new QNode(x);
q.left = this.left; sequential
this.left.right = q; program

this.left = q;

Herbstcampus 2009: Software Transactional Memory



Double ended queue revisited

public void enq(Item x) { transaction

atomic {
QNode q = new QNode(Xx);
q.left = this.left; sequential
this.left.right = q; program
this.left = q;

}
¥

ACID principle from database systems:
e Atomicity: All-or-nothing semantics

e Isolation: Effects of concurrent computations do not
leak into transaction.

Herbstcampus 2009: Software Transactional Memory



Possible implementation of atomic

Optimistic concurrency:
atomic { <sequential code> }

® .. read and write operations in <sequential code>
are recorded in thread-local log

— Writes go to log, not to memory
— Reads obtain value from log or memory
® Commit at the end:

—in one atomic step, check validity of prior
reads and update memory

— If commit fails, rerun transaction

Herbstcampus 2009: Software Transactional Memory



atomic 1S Compositional
Transfer item from one queue to another:

public void transfer(Queue gql, Queue g2) {
atomic {
Item tmp = gl.deq(Q);
g2.enq(tmp) ;
}
}

Herbstcampus 2009: Software Transactional Memory



Conditional Blocking

public Item deq() {

atomic {
1t (this.left == null)
try,;
'_ﬂe Y T rollback and
} re-execute from scratch

® Re-execute when the value of a previously read
variable changes

® No condition variables, no lost wakeups!

Herbstcampus 2009: Software Transactional Memory



Blocking is Compositional

public void transfer(Queue ql, Queue g2) {
atomic {
Item tmp = gl.deq();

q2.enq(tmp) ;
}
}

® Transaction succeeds only if
—ql is not empty
—q2 is not full
® No need to rewrite deq() and enq()
® Note: wait() and signal() do not compose

Herbstcampus 2009: Software Transactional Memory



Language Integration

- Library and Compiler Support
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- 1/0

- Semantics of Nested Transactions
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We Dont have Language Support (Yet)

STMs typically implemented as a library

- sometimes with compiler support

4o 4o library calls
atomic { stmStart();

b = a+5; S temp = stmRead(&a);
} stmwrite(&b, temp +5);
C = b; stmCommit();

C = b;

Source: [Herlihy&Shavit'08]



We Dont have Language Support (Yet)

e Compiler provides
- syntactic convenience for the programmer
- correctness
e programmer may instrument too few accesses
- optimizations
e programmer may instrument too many accesses
e Still, design and development of an STM
solely based on a library is hard ...

Source: [Herlihy&Shavit'08]



Why Its Hard

e TM is not just a collection of useful
objects and methods

e Effect of transactional synchronization
IS pervasive

- How functions are defined

- Control flow: commit & abort
— Exception handling

- Irrevocable actions, 1/0

Source: [Herlihy&Shavit'08]



Exceptions

atomic {
try {

} &ééch (SomeException e) { ... }
}

Should uncaught exceptions commit or abort a
transaction?

e Commit: May leave the data structure in
Inconsistent state.

e Abort: What about exception object itself, and
transactional state that may be reachable from
exception object?

Herbstcampus 2009: Software Transactional Memory



I/0

e atomic blocks require possibility to revoke
operations (rollback)

e Not obvious for 1/0:

atomic {
1f (x == vy)
TaunchMissiles();

e Transaction may see x==y due to interleaving
with other transactions

e Such transaction is doomed to roll back and
must not call launchMissiles()

Herbstcampus 2009: Software Transactional Memory



Transactional Output is OK

1. Output is buffered in transactional shared
memory

atomic {
if (x ==y) E:£>>

print(txbuffer, “Hello world”);

2. Separate I/0 thread performs “real” output

while (true)
atomic {

char* tmp = txbuffer.get(); r, l1
if (tmp) print(tmp) E:£>>

else retry;

¥
}

Herbstcampus 2009: Software Transactional Memory
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User Study [RossbachEtAl'09]

147 undergraduate students are given simple parallel
programming assignment.

Different techniques should be used for concurrency
control (one big lock, fine-grained locking, TM)

Results:

e TM is much less error-prone than fine-grain
locking

e Newbie programmers have trouble understanding
transactions, though TM is still easier than fine-
grain locks.

Source: [RossbachEtAI'08]



Study of Real World Concurrency Bugs
[LUEtAL'08]

Study of 105 bugs in 4 randomly chosen very large
open-source programs:

® "TM can help avoid about one third (39%) of the
examined concurrency bugs.’

o “Some (19%) of the examined concurrency bugs
cannot benefit from basic TM designs because of
their bug pattern.”

Source: [LUETAI'08]
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A “Simple” Model of Concurrency

"The behavior of a concurrent program is

the interleaving of operations executed by
individual threads”.

Premises:
1. Operations are atomic

2. Threads execute operations in program order

3.Operations are observed in a total global
order compatible with the program order.

Herbstcampus 2009: Software Transactional Memory



A “Simple” Model of Concurrency

initially x, y = 0
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---> program order
—> real time execution order



Reality is different

Modern processors support atomic read, write
and rmw operation at word-granularity

Compiler and processors re-order individual
operations if data- and control-dependences in
the sequential program permit.
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Example

Thread 2 violates principle #2 (program order)

Initially x, y =0

threadl searibefi Y IT= o) E———— >

thread2 - AR (E) PR G (@)
)</

*~——¢ o e >
x=0 |x=0|x=1 x=1| |[x=1
y=0] ly=0]|y=0 y=0 |y=1

---> program order
—> real time execution order



TM to the Rescue!

Atomic blocks group composite operations.

Atomic blocks order operations within a
thread.

Atomic blocks induce a global synchronization
order.

Herbstcampus 2009: Software Transactional Memory



Semantics of Atomic Blocks

Unfortunately reality is not as bright when
looking at the details. Two topics:

Atomicity and Isolation
(ACID)

Ordering

Herbstcampus 2009: Software Transactional Memory



ACID Revisited

Atomicity: Partial effects of a transaction are not

visible to|concurrent computations.

Isolation: Effects of |concurrent computations

leak into a ’rxn./

Any concurrent computation

« Semantics called strong atomicity

 Ideal, but probably inefficient to
implement in software

v

do not

Only other transactions
« Semantics called weak atomicity
« Reasonable model for STM




Initially x, y == O

Thread 1 Thread 2
atomic { X = 1;
X = 0;
if (x == 1)
y = 1;
}
Cany == 17

Strong atomicity says: “"No!”

® Sequential reasoning inside atomic block
Weak atomicity says: "Yes!”

® Non-local reasoning necessary

Herbstcampus 2009: Software Transactional Memory



Languages need
High-level Memory Models

e Strong vs. weak atomicity is decided by
programming language designers
- high-level memory model
- Details: [GrossmanEtAl'06]

e Caveat: Weak atomicity has many flavors!

Herbstcampus 2009: Software Transactional Memory



Strong Atomicity

.. gives the following guarantees:

1) Inside a transaction, multiple accesses to the
same variable refurn the same value provided
that no write intervenes.

2)If a variable is written inside an transaction,
subsequent reads in the transaction obtain the
value that was written.

3) An intermediate value, which is overwritten in
the same transaction or a retry is not visible fo
other computations.

Herbstcampus 2009: Software Transactional Memory



Flavors of Weak Atomicity

e Weak atomicity gives up one or several
guarantees made by strong atomicity

Herbstcampus 2009: Software Transactional Memory



Flavors of Weak Atomicity (1/4)

ided that no write

Initially x, y ==
Thread 1 Thread 2 Thread 3
atomic { X = 1; X = 2;
rl = X
r2 = X;
}

Canrl ==1, r2 == 2? Yes!

Herbstcampus 2009: Software Transactional Memory



Flavors of Weak Atomicity (2/4)

ubsequent

2) If a vari is_written inside an tra
' value that was written.

reads in the trans

Initially x, y ==
Thread 1 Thread 2
atomic { X = 1;
X = 0;
if (x == 1)
y = 1;
}

Can y ==1? Yes!

Herbstcampus 2009: Software Transactional Memory



Flavors of Weak Atomicity (3/4)

3) An infe iate value, which is overwri i e same
transaction or a r isible to other computations.

Initially x ==
Thread 1 Thread 2
atomic { rl = x;
X = 1;
X = 2;
}

Can rl == 1? Yes: "Dirty Read"”!

Herbstcampus 2009: Software Transactional Memory



Flavors of Weak Atomicity (4/4)

3) An infermrediate_value, which is overwritten—n the same
transaction or a retry-is nof visible—ta_other computations.

Initially x, y == O

Thread 1 Thread 2
atomic { rl = vy;
y = 1; atomic {
if (x == 0) X = 1;
} retry; }

Can rl == 1? Yes: "Speculative dirty read”!

Herbstcampus 2009: Software Transactional Memory



Atomic Blocks vs. Java Synchronized

Initially x ==
Thread 1 Thread 2 Thread 1 Thread 2
atomic { X = 2; synchronized(lock) { X = 2;
r= X; r= X;
X = r+l; X = r+l;
} }
Can x == 17 Can X == 17
Strong Atomicity: No! Yes: “Lost Update”!

Any flavor of
weak atomicity: No!

Herbstcampus 2009: Software Transactional Memory



Ordering Revisited

Accessing the same variable inside and outside a
transaction is used in common programming idioms:

® Thread-safe lazy initialization
® Data handoff

Herbstcampus 2009: Software Transactional Memory



Thread-Safe Initialization

Initially flag = false, data = 0O;

Initialization (1x) Unsynchronized read (nx)
Thread 1 Thread 2
data = 1; rl = flag;
mfence; if (rl == true)
flag = true; r2 = data:

Canrl =0 && r2 = 0? No!

Idiom works on architectures with processor consistency
(X86), resp. TSO (Sparc).

Herbstcampus 2009: Software Transactional Memory



Thread-Safe Initialization with
Atomic Block?

Initially flag = false, data = 0O;

Thread 1 Thread 2
atomic { rl = flag;

data = 1; 1f (flag == true)
} flag = true; r2 = data;

Canrl =0 && r2 =07?

Some programming languages say vyes!, i.e. permit
this result (e.g Fortress). Idiom not correct in these
languages!

Herbstcampus 2009: Software Transactional Memory



Data Handoff

Initially data = O ready = false

Producer Consumer
Thread 1 Thread 2
data = 42; rl = false;
atomic { atomic {
ready = true; rl = ready;
if (rl) {
r2 = data
}

Canrl = true && r2 = 0?

Sole purpose of atomic block is to establish synchronization
order. It is reasonable to forbid this result (Answer: No!)

Herbstcampus 2009: Software Transactional Memory



Data Handoff

Initially data = O ready = false;

Producer Consumer
Thread 1 Thread 2
data = 42; rl = false;
atomic {} atomic {}
ready = true; rl = ready;
if (rl) {
r2 = data
}

Canrl = true && r2 = 0?

Answer is not so clear here. If behavior should be
forbidden, then empty atomic blocks cannot be eliminated.

Herbstcampus 2009: Software Transactional Memory
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Hardware vs. Software

Hardware:
+ Efficient

+ Implementation can be based on existing mechanisms for
speculative execution

+ Strong atomicity
- Limited capacity for speculative state

— Limited flexibility for different policies, e.g., contention
management

- ISA extensions not obvious

Software;

- slow, efficient implementations compromise on semantics
(weak atomicity)



Hardware vs. Software

Hardware:

+
+

+

Efficient

Implementation can be based on existing mechanisms for
speculative execution

Strong atomicity
Limited capacity for speculative state

Limited flexibility for different policies, e.g., contention
management

ISA extensions not obvious [McDonaldEtAl'06]

Software: This talk: Software Transactional Memory (STM)

slow, efficient implementations compromise on semantics
(weak atomicity)



Hardware vs. Software

Hybrid TM:
e Baseline operation in hardware

e Fallback to software on critical cases (buffer overflow,
obstinate contention)

Hardware-accelerated STM [SahaEtAl'06]:
e Starting point is STM

e Selected, frequent STM operations are accelerated with
hardware primitives.



STM Design Space

e Version management
e Conflict detection

- Consistent versus inconsistent views
- Visible versus invisible reads
- Contention management

® Blocking versus non-blocking progress
® Engine-room issues ...

Herbstcampus 2009: Software Transactional Memory



Version Management

Lazy (redo logs)

e Writes go to log, not fo memory

® Reads require look-aside

e Apply changes on commit

e Rolling back wedged transaction easy

Eager (undo logs)
e Update in place (leads to weak atomicity)
® Reads are fast
e Rolling back wedged transaction complex

Herbstcampus 2009: Software Transactional Memory



Conflict Detection

Eager

e conflict with other transaction detected as soon
as read would return inconsistent value.

® expensive

Lazy
e Validation of read-set at commit time

e Orphan transactions: another txn wrote into
current txns read set

— Can orphans observe inconsistent views?

Herbstcampus 2009: Software Transactional Memory



Do Orphan (Zombie) Transactions
Always See Consistent States?

Yes!
e Invariants observed (no surprises)
e Expensive (maybe)

No!

e Who cares about surprises?

- Divide by zero, infinite loops, et cetera ...

- Use exception/interrupt handlers?

e More efficient (maybe)

Source: [Herlihy&Shavit'08]



Read Synchronization

Visible (mark objects)

e Consistent views

e Additional info for contention management
e Quick validation

e Slower overall (maybe)

Invisible (no footprint)

e Inconsistent views

e Slow validation

e Faster overall (maybe)

Herbstcampus 2009: Software Transactional Memory



Contention Management

Choice of policy can have significant impact on
application performance [Scherer&Scott'04].

e “Aggressive’: txn aborts other conflicting txn at
commit time.

e "Polite”: txn aborts itself on conflict and backs
off.

e "Timestamp”: on conflict, younger txn is
aborted.

® .. <many more>

Herbstcampus 2009: Software Transactional Memory



Blocking vs. Non-Blocking Progress

Blocking

e Delay of one thread can delay other threads
e Internals based on fine-granular locks

e Design choice of many recent STMs

Non-blocking
e Validation and commit based on lock-free algorithms

e Different progress guarantees (obstruction-free, ...,
wait-free): delay only due to contention.

e Slower overall (maybe)

Herbstcampus 2009: Software Transactional Memory



Engine Room Issues ...
e Levels of indirection

e Compatibility with HTM
e Theres lots more ..

Source: [Herlihy&Shavit'08]
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e Sample data from IBMs STM [CascavalEtAl'08]
e Two different algorithms:

— fv (full validation),

- gv# (global version number)
® Metrics:

- Scaling

- Single-thread overhead

- Components of overhead

Herbstcampus 2009: Software Transactional Memory
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Performance: Take-away

e Top-contributors fo overhead:
- read barrier (read)
- commit (end)

e Hardware can help to accelerate read-set
validation

- Intel’s architecture with thread-local mark bits in cache
[SahaEtAl'06]

- Even then: significant overheads remain that cannot be
attributed to a single source / optimization opportunity

Herbstcampus 2009: Software Transactional Memory



Remember This

e TM is a real step forward in parallel
programming methodology

® TM does not solve parallel programming menace
- Focus on task-parallel shared memory

— Parallel still more difficult than sequential
programming

- Buggy programs are easily possible
e TM is a hot research area. Challenges:

- Language infegration: TM semantics, debugging, ...

- For STM: performance, performance, performance

Herbstcampus 2009: Software Transactional Memory
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Delaunay Mesh Refinement
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Figure 4. An example of processing several elements in parallel. The left mesh is the original mesh, while the right mesh
represents the refinement. In the left mesh, the dark grey triangles represent the “bad” elements, while the horizontally
shaded are the other elements in the cavity. In the right mesh, the the black points are the newly added points and
vertically shaded triangles are the newly created elements.

Source: [KulkarniEtAI'06]
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