
Renovation statt Abrissbirne
Sanfte Migration spart Kosten

Bruno Schäffer
Canoo Engineering AG

www.canoo.com 2

Agenda
๏ Motivation

๏ Business Case

๏ Technology

๏ Experience

http://www.canoo.com
http://www.canoo.com

www.canoo.com 3

Motivation
๏ Migration of 4GL or 3270 applications

‣ Applications for expert workers
‣ What should the new application be based on?

๏ Web applications are too slow for expert workers (even with AJAX)

๏ Swing (or any other widget toolkit) is too low-level

๏ Developers should focus on what and not how

Business Technology

http://www.canoo.com
http://www.canoo.com

www.canoo.com 4

7
Business: Outdoor advertising with posters in streets,
train stations, parking lots, shopping centers, tourist
resorts, airports; posters in and on vehicles

Affichage, APG, IT Dept.

APG IT Department (by Dec 2007)
 Development Staff: 20.6
 Operations Staff: 7.9
 Administration Staff: 2.2

APG (by Dec 2007)
 Staff: 507
 Billboards (rented 1-3 weeks): 75’700
 Market share in Switzerland: ~ 70 %

Affichage Holding (by Dec 2007)
 Staff: 819
 Turnover: 396’900’000 CHF

http://www.canoo.com
http://www.canoo.com

www.canoo.com 5

From Beast

http://www.canoo.com
http://www.canoo.com

www.canoo.com 6

To Beauty

http://www.canoo.com
http://www.canoo.com

www.canoo.com

๏ Billposting Business and IT
‣ Processes are demanding and very specific
‣ Data processing on the enterprise level offers

operational benefits
‣ Market offers no IT solutions for this business
‣ ➜ Big players use proprietary solutions

๏ Reservation System IT21
‣ Covers all relevant billposting processes: face acquisition

and management, product management, sales, logistics,
allowance payments

‣ Built between 2001 and 2003 with an effort of some
43 PY in IT and project management

‣ > 300 screens
‣ Installed in Switzerland, Romania and Greece

๏ Problem: Oracle Forms Client is discontinued
7

Business Case: new UI for Reservation System

http://www.canoo.com
http://www.canoo.com

www.canoo.com

Requirements for Renovation

8

Development Efficiency • Same speed for development and changes as with Oracle Designer/
Forms

User Interface Features • At least equivalent to Oracle Designer/Forms
• Option to extend Oracle Designer/Forms features with acceptable

effort
Architecture • Reuse of existing business logic (incl. authorization) with no change

➜ Two-Tier architecture stays in place
• Support for reuse of larger UI building blocks
• Browser support: not required (Citrix and Intranet only)

Technology • Open, independent - no vendor hook in
• Mature - and yet with viable future perspective
• Widely used, community based - resources available

Development Environment • Solid platform: allocation of responsibility, configuration
management, testing etc.

Idea: Our Oracle Designer/Forms platform is highly standardised and uses a very restricted
number of patterns. If we narrow down our requirements to that little and find the right
abstractions we ought to be able to develop in a Java environment just as efficiently

http://www.canoo.com
http://www.canoo.com

www.canoo.com 9

Architecture – Old

!Presentation Logic

!Validation, Processes

C
li
e
n
t

Presentation

S
e
r
v
e
r

Business Logic

Datastore

!F-Views (Access Control)

!V-Views (Business Logic/Rules)

!Oracle DB

http://www.canoo.com
http://www.canoo.com

www.canoo.com

Platform Options
๏ Java (no need to establish a third technology besides Java and PL/SQL)

๏ Prototyping with Oracle ADF proved too complex

๏ AJAX was considered too complex

10

Mix and Match of Java Technologies

http://www.canoo.com
http://www.canoo.com

www.canoo.com

Principles, Components, and Players
๏ Principles

‣ Make everyday things fast and easy
‣ Make sophisticated and complex things still possible
‣ Flat learning curve
‣ Programmatic approach (complemented by generative/descriptive bits and pieces)
‣ Do not touch server-side business logic and DB

๏ Components
‣ Spring (core, JDBC, template, ORM[JPA/Hibernate], test)
‣ Swing, Swing X, JGoodies Smart Client (forms, binding, validation, looks, ...),

Jemmy
‣ Log4J, EasyMock, c3pO, common bean utils

๏ Players
‣ APG, Canoo, SpringSource (J. Höller), JGoodies (K. Lentzsch),

openArchitectureWare (S. Efftinge)

11

http://www.canoo.com
http://www.canoo.com

www.canoo.com 12

Architecture - New
S
e
r
v
e
r

Business Logic

Datastore

!F-Views (Access Control)

!V-Views (Business Logic/Rules)

!Oracle DB

C
li
e
n
t

Presentation

Access Layer

!Presentation Logic

!Validation, Processes

!Persistency (JPA)

!DB-Access

JDBC

http://www.canoo.com
http://www.canoo.com

www.canoo.com

Persistency I
๏ Persistence layer:

‣ Data Access Objects (DAO)
‣ Entirely generated
‣ Can deal with type hierarchies

๏ Domain Specific Language (DSL)
‣ Customized for architecture/application domain
‣ Allows to extend the DB metainformation

13

entity BankenstaemmeF (id = (bstmId) sequenceName = BSTM_SEQ) {
 manyToOne LaenderBsF land (joinColumns = LAND_ID)
 notNull Number invalid (castTo = Boolean)
 notNull Number eingelesen (castTo = Boolean)
 Number postkontoBank (length = 11) // extended due to formatting with "-"
}

http://www.canoo.com
http://www.canoo.com

www.canoo.com

Persistency II
๏ Data Access Objects

‣ No separate DTO (DTO is merged with DAO)
‣ Developer only deals with properties

๏ openArchitectureWare:
‣ Meta MDA technology for Eclipse: framework for developing MDA tools
‣ Transforms model into DAO and descriptor
‣ Generates JUnit stubs and skeletons for testing DAO

14

http://www.canoo.com
http://www.canoo.com

www.canoo.com

Persistency III
๏ Metainformation

‣ Annotations in DAO
Used by JPA/Hibernate and the UI framework

‣ Descriptors
Exposes DAO/DTO metainformation in a developer friendly way (i.e. as a Java class)
Framework makes use of this metainformation
Developers usually do not access metainformation
Type completion and compile time type checking

๏ Developers don’t have to care about transactions
‣ Infrastructure handles transaction context
‣ Transaction context is established per panel

15

http://www.canoo.com
http://www.canoo.com

www.canoo.com

Meta Design
๏ Developers are not designers!

‣ Developers are not responsible for visual or interaction design
‣ Developers should focus on content

๏ Plan the overall design upfront

๏ As rigid as possible, as flexible as needed

๏ Design is “hard-coded” in the framework!

๏ Elements of Meta Design
‣ Typography, colors, sizes
‣ Contrast, balance
‣ Layout, order, gaps

16

http://www.canoo.com
http://www.canoo.com

www.canoo.com

Templates

17

http://www.canoo.com
http://www.canoo.com

www.canoo.com

Presentation Model I
๏ MVC is a great design pattern for user interface components

๏ MVC is not so great as an architectural pattern for rich user interfaces
‣ What is the model in a form-based application?
‣ View code gets overly complex
‣ Testing is challenging

18

View Controller

Model

events

update

dat
a

ch
an

ge

data access

notification

http://www.canoo.com
http://www.canoo.com

www.canoo.com

Presentation Model II

19

View Controller

Model

events

update

dat
a

ch
an

ge

data access

notification

notification
data access/
data change

Presentation Model

http://www.canoo.com
http://www.canoo.com

www.canoo.com

Presentation Model III
๏ Separate rendering code from presentation logic/state

๏ Presentation model
‣ Takes care of entire presentation logic/state
‣ Presentation state: all state that modifiable
‣ Serves as an adapter to business objects

๏ View
‣ Still keeps entire UI state
‣ Component creation, layouting, event delegation
‣ Observes presentation model
‣ Simple code

๏ Testing
‣ Unit testing for presentation model
‣ View code testing rarely needed

20

http://www.canoo.com
http://www.canoo.com

www.canoo.com

UI Framework / Infrastructure I
๏ Application configuration

‣ Spring and Java-based configuration

21

Workbench

Sub App.

Module Module

...

...

Application

Sub App.

!Data Source

!Component Builder

!Formatter

!Top-Level Menu

!Entity Manager Factory

http://www.canoo.com
http://www.canoo.com

www.canoo.com

UI Framework / Infrastructure II
๏ Codifies meta design

‣ Overall UI structure (➜ application configuration)
‣ Layout class abstracts from layout details
‣ Layout can be adapted (if required)
‣ No visual builder!

๏ Component factory
‣ UI components are customized to domain types
‣ Binding is established
‣ DB meta information is added

22

http://www.canoo.com
http://www.canoo.com

www.canoo.com

UI Framework / Infrastructure III
๏ Presentation Model

‣ Generic presentation model for simple forms
‣ Developer can provide a presentation model of her own

๏ Varia
‣ Window, document, and menu management
‣ Error handling, ...

๏ Developer does not need to know DAO details
‣ Only DAO class and descriptors are required by a developer

23

http://www.canoo.com
http://www.canoo.com

www.canoo.com

Development Environment

24

Eclipse CVS Repository

Continuum

DSL Editor

DSL Generator

Q4E

Archiva

openArchitectureWare

http://www.canoo.com
http://www.canoo.com

www.canoo.com

Development Model
๏ Modules

‣ Can be assigned independently to developers
‣ Configuration assembles a sub-application from modules
‣ Maven is crucial for managing module (version) dependencies

๏ Testing
‣ JUnit tests for DAO + DB functionality (based on Spring test)
‣ JUnit and Jemmy for UI

JUnit for testing complex presentation models
JUnit & Jemmy for functional testing

‣ EasyMock for stubbing

25

http://www.canoo.com
http://www.canoo.com

www.canoo.com 26

Development Efficiency Benchmark

http://www.canoo.com
http://www.canoo.com

www.canoo.com

Demo

27

http://www.canoo.com
http://www.canoo.com

www.canoo.com 28

Example – Home Panel

http://www.canoo.com
http://www.canoo.com

www.canoo.com 29

Example – Detail Form

http://www.canoo.com
http://www.canoo.com

www.canoo.com

Example – Home Panel

30

public class BankenHomePanel extends AbstractSearchHomePanel<BankenHomePanelModel> {
public BankenHomePanel() {
super(BankenPreview.class);
}

@Override
public JTable buildResultsTable(final TableBuilder builder) {
builder.addColumn(BankenstaemmeF.DESC.land().landbezeichnung()).setPrototypeValue("xxxxxxxxxx");
builder.addColumn(BankenstaemmeF.DESC.bankIdentifikator());
//dito for additional columns
return builder.getTable();
}

@Override
protected BankenHomePanelModel createHomePanelPresentationModel(ModuleConfiguration
moduleConfiguration, Conversation conversation) {
return new BankenHomePanelModel(moduleConfiguration, conversation);
}
}

http://www.canoo.com
http://www.canoo.com

www.canoo.com

Example - Home Panel Model

31

public class BankenHomePanelModel extends AbstractSearchHomePanelPresentationModel<BankenstaemmeF>
{

public BankenHomePanelModel(final ModuleConfiguration moduleConfiguration, final Conversation
conversation) {
super(moduleConfiguration, conversation, BankenstaemmeF.class, false);

getSearchableProperties().remove(BankenstaemmeF.DESC.bankSchluessel());
getSearchableProperties().remove(BankenstaemmeF.DESC.bstmId());
getSearchableProperties().remove(BankenstaemmeF.DESC.jVersion());
addEntityFactory(new DefaultEntityFactory("Bankenstamm", BankenstaemmeF.class));
}

@Override
public String getQuickSearchWhereClause(final String quickSearchString) {
//Assemble where clause for quick search
}
}

@Override
public String getOrderByClause() {
return "bankIdentifikator";
}

@Override
public int getNumberOfHitsLimit() {
return 9999;
}
}

http://www.canoo.com
http://www.canoo.com

www.canoo.com

Example - Detail Form

32

public class BankenForm extends AbstractForm<BankenstaemmeF> {

@Override
protected Component createHeader(final HeaderBuilder headerBuilder) {
final BankenstaemmeFDesc desc = BankenstaemmeF.DESC;
headerBuilder.addText(new MessageFormat("{0} {1} {2}"), desc.bankIdentifikator(),
desc.geldinstName(), desc.ort());
return headerBuilder.getHeader();
}

@Override
protected void initSubForms() {
addSubForm(BankenSubForm.class);
}

@Override
protected FormPresentationModel<BankenstaemmeF> createFormPresentationModel(
final ModuleConfiguration moduleConfiguration, final Conversation conversation,
final TemporalContext temporalContext, final AbstractDescriptor<BankenstaemmeF> descriptor) {
return new BankenModel(moduleConfiguration, conversation, temporalContext, descriptor);
}
}

http://www.canoo.com
http://www.canoo.com

www.canoo.com

Example - Detail Form Model

33

public class BankenModel extends FormPresentationModel<BankenstaemmeF> {

public BankenModel(final ModuleConfiguration moduleConfiguration, final Conversation conversation,
final TemporalContext temporalContext, final AbstractDescriptor<BankenstaemmeF> descriptor) {
super(moduleConfiguration, conversation, temporalContext, descriptor);
}

@Validate
public void checkPostkontoBank() {
if (getBean().getPostkontoBank() != null
&& (getBean().getPostkontoBank().toString().length() < 4 || !(CheckUtils
 .checkPcKontoNrPruefziffer(getBean().getPostkontoBank())))) {
message("validation.pckonto.msg", Severity.ERROR, BankenstaemmeF.DESC.postkontoBank());
}
}
}

http://www.canoo.com
http://www.canoo.com

www.canoo.com

Example - Subform

34

public class BankenSubForm extends AbstractSubForm<BankenstaemmeF> {
private JComponent landSuchFeld;
//dito für die weiteren Komponenten

public BankenSubForm() { super("BankenSubForm");}

@Override
protected void initComponents() {
final ComponentBuilder builder = ComponentBuilder.instance(getBuilderFactory(),
getModel(), getFormats(), getResourceMap());
final GepardBuilder gepardBuilder = new GepardBuilder(getBuilderFactory(), getFormats(),
getResourceMap());
final BankenstaemmeFDesc desc = BankenstaemmeF.DESC;

landSuchFeld = gepardBuilder.createLandSearchField(getModel(), desc.land());
clearingNrTextFeld = builder.createTextField(desc.bankIdentifikator());
//dito for additional components
}

@Override
protected JComponent buildPanel() {
final TwoColumnsPanelBuilder builder = TwoColumnsPanelBuilder.instance(getBuilderFactory(),
getResourceMap());
builder.add("land", landSuchFeld, "clearing", clearingNrTextFeld);
//dito für die weiteren Komponenten
return builder.getPanel();
}}

http://www.canoo.com
http://www.canoo.com

www.canoo.com

Experience I
๏ Development

‣ Developers with average Swing/Java know-how can be as efficient as 4GL
developers

‣ Better results (both user interface and code)
‣ Development is a lot more fun
‣ Some business logic was cleaned up against original intentions

๏ Run-Time performance
‣ DB and business logic layer performance unchanged
‣ GUI performance even better
‣ Increased end-user performance due to much improved UI

35

http://www.canoo.com
http://www.canoo.com

www.canoo.com

Experience II
๏ Loading the persistence layer can be expensive

‣ Modules are loaded lazily
‣ 3-tier architecture might be helpful

๏ Effort for framework/infrastructure: ca. 4 PY

36

http://www.canoo.com
http://www.canoo.com

www.canoo.com

Future Directions
๏ More Domain Specific Languages

‣ Plain vanilla forms can easily be described by DSL
‣ Issues: linking to events/presentation logic, refactoring, ...

๏ Better support for Java-based business logic
‣ Much easier to develop complex business logic in Java than in PL/SQL
‣ Encapsulate the business logic in a service of its own

๏ Scripting
‣ Migrate application configuration from Java to Groovy
‣ Glue code

37

http://www.canoo.com
http://www.canoo.com

www.canoo.com

Summary
๏ Meta design is crucial for development productivity and UI quality

๏ Mix and match rather than reinventing the wheel

๏ Application/domain specific framework/infrastructure vastly increases productivity

๏ Infrastructure pays off even for medium sized-projects

38

http://www.canoo.com
http://www.canoo.com

Vielen Dank!

Bruno Schäffer
Canoo Engineering AG

