
Simple Code
Regain Control over Software through Decremental Development

Prof. Peter Sommerlad
HSR - Hochschule für Technik Rapperswil

IFS Institut für Software

Herbstcampus 2009 Simple Code © Prof. Peter Sommerlad 2

Peter Sommerlad
peter.sommerlad@hsr.ch

• Work Areas

o Refactoring Tools (C++,Groovy,
Ruby, Python) for Eclipse

o Decremental Development
(make SW 10% its size!)

o Modern Software Engineering
o Patterns

 Pattern-oriented Software Architecture
(POSA)

 Security Patterns

• Background
o Diplom-Informatiker

(Univ. Frankfurt/M)
o Siemens Corporate Research -

Munich
o itopia corporate information

technology, Zurich (Partner)
o Professor for Software

HSR Rapperswil,
Head Institute for Software

 Credo:

•People create Software
o communication
o feedback
o courage

•Experience through Practice
o programming is a trade
o Patterns encapsulate practical

experience

•Pragmatic Programming
o test-driven development
o automated development
o Simplicity: fight complexity

Herbstcampus 2009 Simple Code © Prof. Peter Sommerlad

Why we need
Decremental Development

•Problems solved by Software increase
o more problems
o larger & more complex

• “Good-enough” quality often isn’t
o when deployed (Beta-Release)
o while maintained (updates breaking stuff)
o with sometimes spectacular failures

•Useful Software is used longer than intended
o pro-active maintenance often neglected
o repeated bug-hunt-fix-patch deteriorates quality
o need tools and methods to sustain software

3

Herbstcampus 2009 Simple Code © Prof. Peter Sommerlad 4

Snake-Oil and
Silver Bullets

•Acronym Jungle
o CASE, OOP, CMM, SGML

 more modern:

o XML, EJB, .NET, UML, MDA

• Technology Overload
o C++
o Corba
o Java
o C#
o VB
o XSLT

We want a
"cure all".

And kill all
problems

Herbstcampus 2009 Simple Code © Prof. Peter Sommerlad

COMPLEXITY

Complexity is one of the biggest problems with
software.
It is much easier to create a complicated
"solution" than to really solve a problem.
Much software complexity is accidental not
inherent to the problem solved.

5

Herbstcampus 2009 Simple Code © Prof. Peter Sommerlad 6

Some Reasons for
Complexity
• Young Guns

o "Hey, I learned so many
complicated things, I want
to use them now!"

o Coolness is important!
o Complex stuff is cool!
o Over-Engineering

• “Challenged” Programmers
o "I don't know how it works,

but I made it run."
o Programming by Coincidence
o No idea of Abstraction
o Copy-Paste Reuse
o Under-Engineering

• Media/Conferences
o "There is this brand new

stuff called XYZ, we tell you
how to achieve productivity
increase with it"

o sells only "newest" stuff

• Consultants

o "We must use XYZ for your
problem" ... thinking
"because it gives us more
billable hours"

• Resume-oriented Developer
o "I'll use this cool new stuff,

because it looks good on my
resume"

Herbstcampus 2009 Simple Code © Prof. Peter Sommerlad

SIMPLICITY
We need to value Simplicity much higher.
Our software needs to be simpler to solve more
complex problems.
Simple software requires work and skill but
pays off in the long run.

7

Herbstcampus 2009 Simple Code © Prof. Peter Sommerlad

Famous Quotes by
Sir C.A.R.(Tony) Hoare

•Inside every large program,
there is a small program trying to get out.

• There are two ways of constructing a software design:
o one way is to make it so simple that there are

obviously no deficiencies, and
o the other way is to make it so complicated that there

are no obvious deficiencies.

• The first method is far more difficult.
8

Herbstcampus 2009 Simple Code © Prof. Peter Sommerlad

Less Code
=

 More Software

9

Herbstcampus 2009 Simple Code © Prof. Peter Sommerlad

Unnecessary Complexity
Starts in the Small

Individuals are guilty!

•Code Example
 next slide

• lack of skill or talent or taste
o don’t know/feel what is “good code”

• thinking “it works”
o value system not fit for needs

• copy-waste mentality
o too much bad code available

10

Herbstcampus 2009 Simple Code © Prof. Peter Sommerlad

Some Examples

• ignorance of boolean logic and shortcuts:

11

if(isOldest)
{
 if(timeLastAccessed< cutOffTime)
 {
 return true;
 }
 else
 {
 return false;
 }
}
else
{
 return false;
}

return isOldest && timeLastAccessed < cutOffTime;

Herbstcampus 2009 Simple Code © Prof. Peter Sommerlad

Programming is too easy:
novices learning curve

•“it compiles!”
o no syntax error detected by compiler

•“it runs!”
o program can be started

•“it doesn’t crash”
o ... immediately with useful input

•“it runs even with random input”
o the cat jumped on the keyboard

•“it creates a correct result”
o a single use case is working with a single

reasonable input
12

Herbstcampus 2009 Simple Code © Prof. Peter Sommerlad

Cultural Reasons

•Project culture favors delivery of bad software
o hard to judge investment in future
o fire-and-forget orders
o deployment date fixation
o manual testing still mainstream

• “Maintenance” is for janitors
o low-profile job
o no one wants to clean the crap
o no budget for creating better abstractions/code
o only adding code or fixing bugs, as little change as

possible, because of risk of breaking something

• lack of feedback, lack of reaction to feedback
13

Herbstcampus 2009 Simple Code © Prof. Peter Sommerlad

Project Perspective

• calls for “shortcuts” through defined ending
o “we fix it later” means “never”!
o initial design debt owed

• useful software lives long (not only temporary)
o multiple releases require long term commitment
o interest to be payed and debt often increases

•Complexity gets introduced from the beginning
o Abstraction seems to only pay-off long term

•more billable hours with bad code!
14

In project management a project consists
of a temporary endeavor undertaken to
create a unique product, service or result

PMBOK Guide

Herbstcampus 2009 Simple Code © Prof. Peter Sommerlad

Long term problems
Dirty Code

15

SMDK
Kölliken

•Dirty Code requires clean up
o sometimes covering up is insufficient

 see pictures!

•Changing Dirty Code is hard
o hard to distinguish valuable remains from

 crap

o Cleaning requires change

•Release cycles get longer and longer
o with fewer and or more buggy features
o can bring down companies or departments

 worst case: brings down customer!

o “We will redesign later” (means never)

Herbstcampus 2009 Simple Code © Prof. Peter Sommerlad

Decremental
Development

•Reduce software size TO 10%
o while keeping required functionality
o while improving its quality
o while improving its design

 measure productivity by Lines of Code (LoC) removed

16

Herbstcampus 2009 Simple Code © Prof. Peter Sommerlad

One means of reduction
-> choice of tool

17

using System;

class HelloWorld
{
 public static int Main(String[] args)
 {
 Console.WriteLine("Hello, World!");
 return 0;
 }
}

puts "Hello, World!"Just think of XML if you need to
think of complexity in syntax

Herbstcampus 2009 Simple Code © Prof. Peter Sommerlad

Hiding +
Knowledge

18

a=[42, 1, 7, 2, 34, 64, 29, 2]

for i in 0..a.length-1 do
 for j in i+1...a.length do
 if (a[i] > a[j]) then
 x = a[i]
 a[i] = a[j]
 a[j] = x
 end
 end
end
puts "a:"
puts a

def swap a, i, j
 x = a[i]
 a[i] = a[j]
 a[j] = x
end

for i in 0..a.length-1 do
 for j in i+1...a.length do
 if (a[i] > a[j]) then
 swap(a, i, j)
 end
 end
end

def swap a, i, j
 a[i], a[j] = a[j],a[i]
end

for i in 0..a.length-1 do
 for j in i+1...a.length do
 if (a[i] > a[j]) then
 swap(a, i, j)
 end
 end
end

for i in 0..a.length-1 do
 for j in i+1...a.length do
 if (a[i] > a[j]) then
 a[i], a[j] = a[j],a[i]
 end
 end
end

Herbstcampus 2009 Simple Code © Prof. Peter Sommerlad

Use existing stuff from libraries
-> Knowledge

19

a=[42, 1, 7, 2, 34, 64, 29, 2]

for i in 0..a.length-1 do
 for j in i+1...a.length do
 if (a[i] > a[j]) then

 a[i], a[j] = a[j],a[i]
 end
 end
end
puts "a:"
puts a

a=[42, 1, 7, 2, 34, 64, 29, 2]
puts "a:"
puts a.sort

Herbstcampus 2009 Simple Code © Prof. Peter Sommerlad

Developer Means for
Decremental Development

•Refactoring
o requires (test-) automation
o higher-level restructuring still missing in tools

 yet to be implemented (TBI), ideas but no tools yet

•Code generation
o as simple as possible, for getting “DRY” code

 shouldn’t require complex XML :-)

•Code-smell detectors (new ideas, TBI)
o lint, FindBugs, metrics etc. are only the beginning
o even better: Design-odor detectors
o with automatic deodorant application :-)

20

Herbstcampus 2009 Simple Code © Prof. Peter Sommerlad

Cultural Means

•Crisis might allow for change in Value System
o short term profit no longer fashionable, when it

means increased risk

• Simplicity vs. Techno-hype
o hard to establish, doesn’t mean not using hi-tech

• Learning and valuation of skill
o no 1000 monkeys with a keyboard

•Maintenance by best skilled people
o who would you hand a valued painting for

restoration?

• Leadership by software experts
o not only “management of resources”

21

Herbstcampus 2009 Simple Code © Prof. Peter Sommerlad

Research Proposal
Decremental Development

•Create better tools for automated Refactoring
o for languages lacking support, but with large code

bases, i.e.,
 C/C++, Java, PL/I, Ada, COBOL(?)
 Groovy, Ruby, javascript, PHP, ...

•Develop new approaches for higher-level
software simplification
o beyond Refactoring
o i.e., detecting potential for simplification

• Increase valuation of Simplicity
o as a software design goal
o articles, presentations, case studies, talks

22

Herbstcampus 2009 Simple Code © Prof. Peter Sommerlad

How do we get there?
or: A Way to Simple Code

•What can YOU do today or tomorrow?
o Value Simplicity and Simple Code
o Establish and improve developer skills
o Clean Code attitude
o SOLID design principles
o Continuous design improvement

 Refactoring

o Test automation with GUTs
o Software lifetime perspective beyond initial project
o join in at http://wiki.hsr.ch/SimpleCode

• Start NOW!

23

http://wiki.hsr.ch/SimpleCode
http://wiki.hsr.ch/SimpleCode

Herbstcampus 2009 Simple Code © Prof. Peter Sommerlad

Questions?

• join in at http://wiki.hsr.ch/SimpleCode

• or contact me at peter.sommerlad@hsr.ch

24

mailto:peter.sommerlad@hsr.ch
mailto:peter.sommerlad@hsr.ch

Vielen Dank!

Prof. Peter Sommerlad
HSR - Hochschule für Technik Rapperswil

IFS Institut für Software

